期刊文献+

基于监控数据的MySQL异常检测算法 被引量:6

MySQL Outlier Detection Algorithm Based on Monitoring Data
下载PDF
导出
摘要 随着互联网数据规模的增长,服务器集群的规模快速扩大,对大规模的集群进行监控和分析成为互联网行业运维的难点。为此,根据监控统计数据剧烈波动的特点,提出一种My SQL异常检测分析算法,采用基于模式的异常检测方法,无须设置阈值,分段取模式特征值,计算异常点、异常区间和异常程度。实验结果表明,该算法对于抖动剧烈监控数据的时序序列可以较好地提取数据特征,与基于均值方差的异常检测算法相比,具有更高的精准度,对监测数据的适用性较强。 With the explosive growth of the data on the Internet, the scale How to carry out large-scale cluster monitoring and analysis becomes a of the server cluster is rapidly expanding difficult problem in the Internet industry Therefore,this paper presents a new method for detection and analysis of the monitoring data according to the monitoring jittering data. It adopts pattern-based outlier detection method without setting a threshold, takes the eigenvalues, calculaties the outliers,and obtains the abnormal range and degrees. Experimental results show that the algorithm can extract data features for time sequence of jittering data, and has a higher precision and better applicability than the outlier detection algorithm based on mean-variance.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第11期41-46,共6页 Computer Engineering
基金 第三届"百度主题研究"基金资助项目
关键词 异常检测 监控数据 统计 模式 时间序列 outlier detection monitoring data statistics pattern time sequence
  • 相关文献

参考文献12

  • 1Hodge V J, Austin J. A Survey of Outlier Detection Methodologies [ J ] . Artificial Intelligence Review, 2004, 22(2) :85-126.
  • 2李光强,郑茂仪,邓敏.时空数据异常探测方法[J].计算机工程,2010,36(5):35-36. 被引量:9
  • 3Rousseeuw P J,Hubert M. Robust Statistics for Outlier Detection[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,2011,1 ( 1 ) :73-79.
  • 4Jiang M F, Tseng S S, Su C M. Two-phase Clustering Process for Outliers Detection [ J ]. Pattern Recognition Letters, 2001,22 ( 6 ) : 691-700.
  • 5He Z, Xu X, Deng S. Discovering Cluster-based Local Outliers [ J ]. Pattern Recognition Letters, 2003,24 ( 9 ) : 1641-1650.
  • 6Esling P, Agon C. Time-seriesData Mining [ J ]. ACM Computing Surveys ,2012,45 ( 1 ) : 12-19.
  • 7Breunig M M, Kriegel H P, Ng R T, et al. LOF: Identifying Density-based Local Outliers[ J]. ACM Sig- mod Record.2000.29 ( 2 ) : 93-104.
  • 8陈乾,胡谷雨,路威.基于距离和DF-RLS的时间序列异常检测[J].计算机工程,2012,38(12):32-35. 被引量:9
  • 9Jin W, Tung A K H, Han J. Mining Top-n Local Outliers in Large Databases [ C ]//Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press ,2001:293-298.
  • 10Papadimitriou S, Kitagawa H, Gibbons P B, et al. LOCI: Fast Outlier Detection Using the Local Correlation Integral[ C]//Proceedings of the 19th International Con- ference on Data Engineering. Washington D. C. , USA: IEEE Press, 2003 :315-326.

二级参考文献30

  • 1杜奕,卢德唐,李道伦,赵亦朋.一种快速的时间序列线性拟合算法[J].中国科学技术大学学报,2007,37(3):310-314. 被引量:16
  • 2Agrawal R,Faloutsos C,Swami A.Efficient similarity search in sequence databases[C]//Proc of the Fourth Int'l Conference on Foundations of Data Organization and Algorithms.London:Springer Verlag, 1993 : 69-84.
  • 3Chan K P,FU W C.Efficient time series matching by wavelets[C]// Proceedings of the International Conference on Data Engineering. Washington: IEEE Computer Society, 1999 : 126-133.
  • 4Korn F,Jagadish H V,Faloutsos C.Efficiently supporting Ad hoc queries in large datasets of time sequences[C]//Proceedings of the ACM SIGMOD Conference on Management of Data.New York: ACM Press, 1997:289-300.
  • 5Park S,Chu W W,Yoon J,et al.Similarity search of time-warped subsequences via a suffix tree[J].Information Systems,2003,28(7): 867-883.
  • 6Prat K B,Fink E.Search for patterns in compressed time series [J]. International Journal of hnage and Graphics, 2002,2( 1 ) : 89-106.
  • 7Keogh E J, Chakrabarti K,Pazzani M J,et al.Dimensionality reduction for fast similarity search in large time series databases [J]. Knowl Inf Syst,2001,3(3):263-286.
  • 8Yi B K,Faloustsos C.Fast time sequence indexing for arbitrary Lp norms[C]//Proceedings of the 26th International Conference on Very Large Data Bases.San Francisco:Morgan Kaufmann Publishers Inc, 2000: 385-394.
  • 9Keogh E,Folias T.The UCR time series data mining archive[D/ OL].Irvine, CA: University of California, Department of Information and Computer Science,2002.http ://www.cs.ucr.edu/-eamonn/TSD- MMindex.html.
  • 10Cheng Taoz Li Zhilin. A Multiscale Approach for Spatio-temporal Outlier Detection[J]. Transactions in GIS, 2006, 10(2): 253-263.

共引文献30

同被引文献69

引证文献6

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部