期刊文献+

基于模糊数据挖掘的虚拟环境主机故障预测 被引量:11

Fault Prediction of Virtual Environment Host Based on Fuzzy Data Mining
下载PDF
导出
摘要 为避免虚拟计算环境中由于资源配置不合理,导致虚拟主机服务中断或数据丢失的问题,设计一种虚拟主机故障预测模型。利用主机运行日志进行模糊数据挖掘,获得故障预测的模糊关联规则。根据故障预测中聚类区域边缘数据,给出基于规则的阈值迭代算法求解日志数据预处理修正系数,进而提高规则的匹配率。实验结果表明,该模型能够在实际服务失效前预测故障,预测准确率达到85%以上。 In order to report the service failure of the host or data interrupt in the virtual environment caused by undue resource allocation, this paper proposes a fault prediction model for virtual host. This model uses logs of the virtual host to mining the fuzzy association rules of fault predictions. Aiming at large error about rule matching problem in fault predictions caused by the edge data in cluster region, the model presents the threshold iterative algorithm based on the rules for solving the log data preprocessing coefficient,improving the rule matching rate. Experimental result shows that the prediction model can predict fault before the actual service fails,with an accuracy above 85% .
出处 《计算机工程》 CAS CSCD 北大核心 2015年第11期202-206,共5页 Computer Engineering
关键词 虚拟环境 主机故障预测 模糊数据挖掘 关联规则 阈值迭代 virtual environment host fault prediction fuzzy data mining association rule threshold iteration
  • 相关文献

参考文献13

  • 1Kumar R A. Pragmatic Approach to Predict Hardware Failures in Storage Systems Using MPP Database and Big Data Technologies[ C ]//Proceedings of IACC' 14. Washington D. C. ,USA :IEEE Press ,2014:779-788.
  • 2Sunita S. An Associative Classifier Using Weighted Association Rule [ C ]//Proceedings of 2009 World Congresson Nature & Biologically Inspired Computing. Piscataway, USA : IEEE Publications ,2009 : 1492-1496.
  • 3Soean B. Fuzzy Association Rule Mining Approaches for Enhancing Prediction Performance [ J ]. Expert Systems with Applications,2013,40(17) :6928-6937.
  • 4Kuok C M, Fu A. Mining Fuzzy Association Rules in Database [ J ]. SIGMOD Record, 1998,27 ( 1 ) : 41-46.
  • 5Chen Zuoliang. Building an Associative Classifier Based on Fuzzy Association Rules [ J ]. International Journal of Computational Intelligence Systems, 2008, 1 ( 3 ) : 262- 272.
  • 6Faustino C P, Novaes C P. Improving the Performance of Fuzzy Rules-based Forecasters Through Application of FCM Algorithm [ J ]. Artificial Intelligence Review, 2014,41 (2) :287-300.
  • 7Ichihashi H. FCM Classifier for High-dimensional Data[ C]//Proceedings of IEEE International Con- ference on Fuzzy Systems. Washington D. C. , USA: IEEE Press, 2008 : 200-206.
  • 8Pi Dechang. A Modified Fuzzy C-means Algorithm for Association Rules Clustering [ M ].Berlin, Germany: Springer, 2006.
  • 9Touzi A G. Efficient Reduction of the Number of Associations Rules Using Fuzzy Clustering on the Data[C]//Proceedings of ICSI' 11. Washington D. C., USA:IEEE Press ,2011 : 191-199.
  • 10Chen Chunhao. A Fuzzy Coherent Rule Mining Algori- thm [J]. Applied Soft Computing, 2013, 13 ( 7 ) : 3422 -3428.

二级参考文献3

共引文献36

同被引文献55

引证文献11

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部