期刊文献+

基于多特征与多分类器融合的PPIE方法 被引量:1

Protein-protein Interaction Extraction Method Based on Multiple Features and Multiple Classifiers Fusion
下载PDF
导出
摘要 从生物医学文献中自动地抽取蛋白质相互作用(PPI)关系是文本挖掘的一项重要任务。考虑到特征和分类器的选择对于PPI任务的重要性,提出一种基于丰富特征和多分类器融合的蛋白质关系抽取方法。选取15种词法、句法及语义特征,融合3种分类器,采用文档级别的10倍交叉验证方法,在5个公开的PPI基准语料上进行评估实验,结果表明,该方法在AIMed语料上取得的F值和AUC值分别为63.7%和87.8%,具有良好的抽取性能。 Automatically extracting Protein-protein Interaction(PPI) from biomedical literature is a significant task in text mining. Considering the choice of features and the selection of classifier is of great importance for Protein-protein Interaction Extraction(PPIE) task, this paper proposes a method to combine various features and multiple classifiers, Fifteen lexical, syntactic and semantic features, three kinds of classifiers and the standard ten-fold document level crossvalidation evaluation method are used to evaluate on the five public PPI corpuses, and results show that the method achieves the preferable F-score(63.7% ) and AUC-score( 87. 8% ) on the AIMed corpus which is on the top of the PPI extraction task, and it has better extraction performance.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第11期207-212,共6页 Computer Engineering
基金 国家自然科学基金资助项目(61340020)
关键词 蛋白质相互作用关系抽取 丰富特征 支持向量机 最大熵 图核 Protein-protein Interaction Extraction ( PPIE ) rich features Support Vector Machine ( SVM ) maximum entropy graph kernel
  • 相关文献

参考文献17

  • 1Pyysalo S, Ginter F, Heimonen J, et al. Biolnfer: A Corpus for Information Extraction in the Biomedical Domain [ J ]. BMC Bioinformatics, 2007,8 ( 1 ) : 50.
  • 2Bunescu R, Ge R, Kate R J, et al. Comparative Experiments on Learning Information Extractors for Proteins and Their Interactions [J]. Artificial Intelligence in Medicine, 2005,33 ( 2 ) : 139-155.
  • 3Ding J,Berleant D, Nettleton D, et al. Mining Medline: Abstracts, Sentences, or Phrases [ C ]//Proceedings of IEEE Symposium on Biocomputing. Washington D. C. , USA : IEEE Press, 2002 : 326-337.
  • 4Fundel K, Kiiffner R, Zimmer R. RelEx-relation Extra- ction Using Dependency Parse Trees [J]. Bioinformatics,2007,23 (3) :365-371.
  • 5Nadellec C. Learning Language in Logic-genic Inter- action Extraction Challenge[ C ]//Proceedings of the 4th IEEE Learning Language in Logic Workshop. Washington D. C. , USA : IEEE Press ,2005:216-222.
  • 6Bunescu R,Mooney R, Ramani A, et al. Integrating Coo- ccurrence Statistics with Information Extraction for Robust Retrieval of Protein Interactions from Medline[C]//Pro- ceedings of Workshop on Linking Natural Language Pro- cessing and Biology. [ S. 1. ]:Association for Comput- ational Linguistics ,2006:49-56.
  • 7Fundel K, Ktiffner R, Zimmer R. RelEx Relation Extraction Using Dependency Parse Trees [J]. Bioinformatics ,2007,23 ( 3 ) :365-371.
  • 8Qian L, Zhou G. Tree Kernel-based Protein-protein Interaction Extraction from Biomedical Literature [ J ]. Journal of Biomedical Informatics, 2012, .45 ( 3 ) : 535 -543.
  • 9Qian W, Fu C, Cheng H. Semi-supervised Method for Extraction of Protein-protein Interactions Using Hybrid Model [ C ]//Proceedings of ISDEA '13. Washington D. C. , USA :IEEE Press ,2013 : 1268-1271.
  • 10Airola A, Pyysalo S, Bjarne J, et al. All-paths Graph Kernel for Protein-protein Interaction Extraction with Evaluation of Cross-corpus Learning [ J ]. BMC Bioinformatics ,2008,9 ( 11 ).

二级参考文献13

  • 1ZANZONI A,MONTECCHI-PALAZZI L,QUONDAM M,et al.MINT:A molecular INTeraction database[J].FEBS Letters,2002,513(1):135-140.
  • 2BADER G,BETEL D,HOGUE C.Bind—the biomolecular interac-tion network database[J].Nucleic Acids Research,2003,31(1):248-250.
  • 3XENARIOS I,RICH D W,SALWINSKI L,et al.DIP:The data-base of interacting proteins[J].Nucleic Acids Research,2000,28(1):289-291.
  • 4BUNESCU R,MOONEY R,RAMANI A.Integrating co-occurrencestatistics with information extraction for robust retrieval of protein in-teractions from Medline[C]//BioNLP'06:Proceedings of the Work-shop on Linking Natural Language Processing and Biology:TowardsDeeper Biological Literature Analysis.Stroudsburg:Association forComputational Linguistics,2006:49-56.
  • 5FUNDEL K,KUFFER R,ZIMMER R.RelEx-relation extraction u-sing dependency parse trees[J].Bioinformatics,2006,23(3):365–371.
  • 6NIELSEN L A.Extracting protein-protein interactions using simplecontextual features[C]//BioNLP'06:Proceedings of the Workshopon Linking Natural Language Processing and Biology:Towards Dee-per Biological Literature Analysis.Stroudsburg:Association forComputational Linguistics,2006:120-121.
  • 7MIYAO Y,SAETRE R,SAGAE K,et al.Task-oriented evaluationof syntactic parsers and their representations[EB/OL].[2011-05-01].http://www.aclweb.org/anthology-new/P/P08/P08-1006.pdf.
  • 8BUNESCU R C,MOONEY R J.A shortest path dependency kernelfor relation extraction[C]//HLT'05:Proceedings of the Conferenceon Human Language Technology and Empirical Methods in NaturalLanguage Processing.Stroudsburg:Association for ComputationalLinguistics,2005:724-731.
  • 9AIROLA A,PYYSALO S,BJRNE J,et al.All-paths graph ker-nel for protein-protein interaction extraction with evaluation of cross-corpus learning[J].BMC Bioinformatics,2008,9(Suppl 11):S2.
  • 10MIWA M,STRE R,MIYAO Y,et al.Protein-protein interactionextraction by leveraging multiple kernels and parsers[J].Interna-tional Journal of Medical Informatics,2009,78(12):39-46.

共引文献1

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部