期刊文献+

基于多特征融合的深度置信网络图像分类算法 被引量:12

Image Classification Algorithm for Deep Belief Network Based on Multi-feature Fusion
下载PDF
导出
摘要 针对现有单一特征描述符及浅层结构分类算法分类正确率较低的问题,基于底层图像特征提出一种针对自然界图像特点的深度置信网络(DBN)图像分类算法。提取样本图像中的颜色、纹理和形状特征,构成多特征融合的权重矩阵,并对特征矩阵进行归一化处理,利用构建的4层DBN分类器进行训练和分类。采用Corel图库,通过训练权重进行测试,结果表明,该算法的平均分类正确率达到85.1%,高于使用单一特征的分类算法和其他主流分类算法。 Taking the single feature and the major classification algorithms into consideration, an image classification algorithm based on fusion of multi-feature for Deep Belief Network(DBN) is proposed to classify the nature images. The features about color, texture, shape are extracted and the characteristic weight matrix is formed. Then the characteristic matrix is normalized. The samples are trained and classified using the DBN with four levels which is constructed. The proposed method has been evaluated on the Corel dataset by train weight, and the result shows that the average classification accuracy is 85.1% by the proposed algorithm,which is higher then single feature algorithm and other mainstream algorithms.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第11期245-252,共8页 Computer Engineering
基金 国家自然科学基金资助项目(61463032 61363046 41261091)
关键词 深度置信网络 图像分类 特征提取 多特征融合 图像检索 Deep Belief Network (DBN) image classification feature extraction multi-feature fusion image retrival
  • 相关文献

参考文献27

  • 1许元飞.基于纹理的图像检索算法研究[J].西安科技大学学报,2013,33(4):470-474. 被引量:10
  • 2Bengio Y, Delalleau O. On the Expressive Power of Deep Architectures[ C]//Proceedings of the 14th International Conference on Discovery Science. Berlin, Germany : Springer-Verlag ,2011 : 18-36.
  • 3Wei Huang,Yan Gao,Chan K L. A Review of Region- based Image Retrieval [J]. Journal of Signal Processing Systems,2010,59(2) :143-161.
  • 4Datta R.Joshi D, Li J, et al. Image Retrieval: Ideas, Influences, and Trends of the New Age [J]. ACM Computing Surveys ,2008,40( 2 ) : 1-5.
  • 5邓金杰,肖诗斌,吕学强,等.基于特征融合的图像检索研究[C]//第四届图像图形技术与应用学术会议论文集.北京:中用传媒大学出版社,2009:189-193.
  • 6Zheng Liang,Wang Shengjin, Tian Qi. Coupled Binary Embedding for Large-scale Image Retrieval [ J ]. IEEE Transactions on Image Processing, 2014.23 ( 8 ) : 3368- 3380.
  • 7Zheng Liang,Wang Shengjin, Liu Ziqiong, et al. Packing and Padding :Coupled Multi-index for Accurate linage Re- trieval[ C ]//Proceedings of CVPR '14. Washington D. C. , US A : IEEE Press, 2014 : 1947-1954.
  • 8Freund Y, Schapire R E. Experiments with a New Boosting Algorithm [ C ]//Proceedings of ICML ' 96. Washington D. C. ,USA:IEEE Press,1996: 148-156.
  • 9Jordan A. On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes[C]//Proceedings of NIPS' 01.[ S. I. ]: NIPS Foundation, inc. ,2001:605-610.
  • 10Zhang J,Marszalek M, Lazebnik S, et al. Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study [J]. International Journal of Computer Vision, 2007,73 ( 2 ) : 213-238.

二级参考文献53

  • 1陈伏兵,陈秀宏,张生亮,杨静宇.基于模块2DPCA的人脸识别方法[J].中国图象图形学报,2006,11(4):580-585. 被引量:61
  • 2苏冬雪,吴小俊.基于多特征模糊聚类的图像融合方法[J].计算机辅助设计与图形学学报,2006,18(6):838-843. 被引量:12
  • 3郭竞,周明全,耿国华.基于形状的3D模型快速检索算法[J].西安科技大学学报,2007,27(1):152-155. 被引量:1
  • 4沈新宇,许宏丽,官腾飞.基于直推式支持向量机的图像分类算法[J].计算机应用,2007,27(6):1463-1464. 被引量:10
  • 5Li Shutao,Yang Bin.Multifocus image fusion using region segmentation and spatial frequency[J].Image and Vision Computing,2008,26(7):971-979.
  • 6Lewis J J,OCallaghan R J.Pixel-and region-based image fusion with complex wavelets[J].Information Fusion,2007,8(2):119-130.
  • 7Lewis J J,OCallaghan R J,Nikolov S G,et al.Region-based image fusion using complex wavelets[C]//Proceedings of the 7th International Conference on Information Fusion.Stockholm,Sweden:[s.n.],2004:555-562.
  • 8Chen Yixin,Wang J Z.A region-based fuzzy feature matching approach to content-based image retrieval[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(9):1252-1267.
  • 9Liu K,Cheng Y Q,Yang J Y,et al.Algebraic feature extraction for image recognition based on an optimal discriminant criterion[J].Pattern Recognition,1993,26(6):903-911.
  • 10Cheng H D,Chen J R,Li J.Threshold selection based on fuzzy c-partition entropy approach[J].Pattern Recognition,1998,31(7):857-870.

共引文献652

同被引文献75

引证文献12

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部