期刊文献+

基于非下采样Contourlet变换的人脸表情识别算法研究 被引量:1

Facial Expression Recognition based on the Next Sampling Contourlet Transform Algorithm Research
下载PDF
导出
摘要 本文研究了非下采样Contourlet变换在人脸表情识别中的应用,并设计了相应的算法流程。首先将人脸表情图像分割为最能表征表情信息的眼睛和嘴巴两个部分,然后利用非下采样Contourlet变换对分割的局部图像进行特征提取,最后使用极限学习机进行分类,并与BP神经网络进行对照实验。研究结果显示,表情分类平均准确率可达86.57%,比BP神经网络的分类方法平均准确率高出7.43%。而在执行速度方法,极限学习机却是BP神经网络的11.09倍,表明了本实验方案的高效性和可行性。 This paper studies the next sampling Contourlet transform in the application of facial expression recognition,and the corresponding algorithm design process. The image segmentation of facial expression is divided into two parts covering the eyes and the mouth,which to the most extent can represent the expression information,and then uses the sampling Contourlet transform under the division of local image feature extraction,furtherly using extreme learning machine for classification,and makes the comparison with the BP neural network control experiment. The results showed that expression classification accuracy can reach 86. 57% on average,than the BP neural network classification method of average accuracy higher than 7. 43%. In the speed of execution method,the fact that extreme learning machine is 11. 09 times that of the BP neural network shows the efficiency and feasibility of the experiment scheme.
出处 《智能计算机与应用》 2015年第5期35-39,共5页 Intelligent Computer and Applications
关键词 人脸表情识别 非下采样CONTOURLET变换 极限学习机 BP神经网络 Facial Expression Recognition Next Sampling Contourlet Transform Extreme Learning Machine BP Neural Network
  • 相关文献

参考文献5

  • 1HUANG G, ZHOU H. Extreme learning machine for regression and multiclass cassification [ J ]. Systems, Man, and Cybernetics, PartB Cybernetics, IEEE Transactions on, 2012,42 (2) :513 - 529.
  • 2ZUO Kunlong , LIU Wenyao. Facial expression recognion using active appearance models [ J ] . Journal of Optoelectronics Laser, 2004 , 15 (7) : 853-857.
  • 3CHANG Ya, HU Changbo, TURK M. Probabilistic expression analy- sis on Manifolds [ C ]//Prec. of Conference on Computer Vision and Pattern Recognition, Washinon D. C. USA: [ s. n. ] . 2004.
  • 4朱健翔,苏光大,李迎春.结合Gabor特征与Adaboost的人脸表情识别[J].光电子.激光,2006,17(8):993-998. 被引量:48
  • 5Littlewort G, Bartlett M S, Fasel I, et al. Analysis of machine learn- ing methods for real - time recognition of facial expressions from video [ J 1. Computer Vision & Pattern Recognition, 2004. (Available on- line 26 August 2014).

二级参考文献12

  • 1左坤隆,刘文耀.基于活动外观模型的人脸表情分析与识别[J].光电子.激光,2004,15(7):853-857. 被引量:19
  • 2顾华,苏光大,杜成.人脸关键特征点的自动定位[J].光电子.激光,2004,15(8):975-979. 被引量:16
  • 3Lyons M, Akamatsu S, Kamachi M, et al. Coding facial expressions with Gabor wavelets[A]. Third IEEE ConfFace and Gesture Recognition [C] . 1998,200-205.
  • 4Lyons M J, Budynek J, Akamatsu S. Automatic classification of single facial images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21 ( 12 ) :1357-1362.
  • 5Zhang Z, Lyons M, Schuster M, et al. Comparison between geometry-based and Gabor-wavelets-based facial expression recognition using multi-layer perceptron[A].Third IEEE Conf Face and Gesture Recognition [C]. 1998,454-459.
  • 6Lee T. Image representation using 2-D Gabor wavelets[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1996,18 (10) : 959-971.
  • 7Paul Viola, Michael Jones. Robust real-time face dete[J].International Journal of Computer Vision, 2004,57 ( 2 ):137-154.
  • 8Piyanuch Silapachote, Deepak Karuppiah, Allen Hanson.Feature selection using adaboost for face expression recognition[A]. The 4 th IASTED International Conference on Visualization, Imaging, and Image Frocessing[C]. 2004,84-89.
  • 9Vapnik V. Statistical Learning Theory[M]. New York:John Wiley & Sons Inc,1998.
  • 10Bourel F,Chibelushi C C, Low A A. Robust facial expression recognition using a state-based model of spatially-localised facial dynamics[A]. Fifth IEEE International Conference on Automatic Face and Gesture Recognition [C] .2002,106-111.

共引文献47

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部