期刊文献+

社会网络中的链接预测任务

Link Prediction Task in Social Network Service
下载PDF
导出
摘要 随着互联网技术的飞速发展,社会网络成为了许多人生活日常中的一部分。这些不同兴趣的社会网络,大都会提供种类各异的用户交互服务。这些种类丰富的社会成员之间的交互行为大部分都可以用链接的形式来表示。链接预测问题主要以分析链接网络结构为主要方法,从而预测一对节点是否会在未来产生链接,或是预测一对节点之间已经存在链接的类型。本文详细介绍了链接预测的任务,并给出了相应的求解方法。 With the rapid development of internet techniques,SNS( Social Network Service) becomes many people's daily life. Most of these different focus SNSs provide many kinds of functions for member interactions. Most of the interaction among members could be represented as link. By analyzing the structure of link network,the link prediction problem aims to estimate the existence or value of the links. In this paper,the details of link prediction task and certain solutions are respectively introduced.
出处 《智能计算机与应用》 2015年第5期43-45,49,共4页 Intelligent Computer and Applications
基金 国家自然科学基金(61100094 61272383 61300114)
关键词 链接预测 社会计算 用户相似度度量 极性值分类 Link Prediction Social Computing User Similarity Metric Signed Value Classification
  • 相关文献

参考文献13

  • 1BOCCALETTI S, LATORA V, MORENO Y, et al. Complex net- works: Structure and dynamics[J]. Physics reports, 2006, 424 ( 4) : 175 - 308.
  • 2SMITH M A, SHNEIDERMAN B, MILIC - FRA YLING N, et al. Analyzing (social media) networks with NodeXL[C] II Proceedings of the Fourth International Conference on Communities and Technologies, New York, NY, USA: ACM, 2009:255 - 264.
  • 3ETOOR L, DIEHL C P. Link mining: A survey[J]. ACM SIGKDD Explorations Newsletter, 2005, 7(2):3 - 12.
  • 4LlBEN - NOWELL D, KLEINBERGJ. The link - prediction problem for social networks[J].Journal of the American society for information science and technology, 2007 , 58 (7) : 10 19 - 1031.
  • 5DONG L, LI Y, YIN H, et al. The algorithm of link prediction on Social Network[J]. Mathematical Problems in Engineering, 2013 (1):1-7.
  • 6AL HASAN M, CHAOJI V, SALEM S, et al. Link prediction using supervised learning[C] IISDM ' 06: Workshop on Link Analysis, Counter - terrorism and Security, Philadelphia, PA, USA: SIAM, 2006:1 -10.
  • 7HSIEH CJ, CHIANG K Y, DHILLON I S. Low rank modeling of signed networks[C] II Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, New York, NY, USA: ACM, 2012:507 - 515.
  • 8TANGJ, CHANG S, AGGARWAL C, et al. Negative link prediction in social media[C] II Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, New York, NY, USA: ACM, 2015:87 - 96.
  • 9SYMEONIDIS P, TIAKAS E. Transitive node similarity: predicting and recommending links in signed social networks[J]. World Wide Web, 2014,17(4) :743 - 776.
  • 10LESKOVECJ, HUTTENLOCHER D, KLEINBERGJ. Predicting positive and negative links in online social networks[C] II Proceedings of the 19th international conference on World wide web, New York, NY, USA: ACM, 2010:641 - 650.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部