期刊文献+

基于云平台的MapReduce性能优化策略 被引量:2

MapReduce performance optimization strategy based on a cloud platform
下载PDF
导出
摘要 设计了基于云平台架构的M印Reduce性能优化策略,全面考虑MapReduce作业过程中的数据传输与数据处理流程,将虚拟网络拓扑结构的设计描述成一个优化问题,并构建模型实现了通信代理数量、通信代理的放置位置以及虚拟机与通信代理之间的映射关系,以解决目前大多数研究只单方面考虑平台的数据处理或数据传输性能的缺陷.实验结果表明,与随机匹配策略和贪心策略相比,本方案优化了云计算系统的虚拟网络拓扑结构,减少了数据传输与处理的时间总开销,显著地提高了大数据处理的整体性能. A MapReduce performance optimization strategy bassd on cloud platform architecture was designed,and both data transmission and data processing in the process of MapReduce were considered.The design of virtual network topology was described as an optimization problem,and the model was constructed to realize the optimal number of communication agents,optimal placement of each communication agent and the optimal matching between virtual machines and communication agents in order to solve the problem that only the performance of data processing or data transmission has been considered in current studies.The experimental results show that,compared with random matching strategy and greedy strategy,our topology optimization mechanism can optimize virtual network topology of cloud computing systems,reduce the cost of the total time for data communication and data processing and improve the overall performance of cloud-based big data applications dramatically.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期752-758,共7页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金项目(61473329) 福建省自然科学基金项目(2015J01244,2015J01009) 厦门市科技计划项目(3502Z20131158)
关键词 云计算 虚拟网络 MAPREDUCE 优化部署 cloud computing virtual network MapReduce optimization deployment
  • 相关文献

参考文献14

  • 1Dean J,Ghemawat S.MapReduce:simplified data processing on large clusters[J].Communications of the ACM,2008,51(1):107-113.
  • 2Wiki A.Hadoop[EB/OL].(2013-10-5)(2013-11-12].https:// en.wikipedia.org/ wiki / Apache _ Hadoop.
  • 3Kambatla K,Pathak A,Pucha H.Towards optimiz- ing hadoop provisioning in the cloud[C]//Proc of the First Workshop on Hot Topics in Cloud Computing.San Diego:USENIX Association,2009:118-127.
  • 4Yuan Yij Wang Hai-yang,Wang Danj et al.On interference-aware provisioning for cloud-based big data processing[C]//Quality of Service(IWQoS),2013 IEEE/ACM 21st International Symposium on.Montreal:IEEE,2013:1-6.
  • 5Herodotou H,Dong F,Babu S.No one(cluster)size fits all:automatic cluster sizing for data-intensive analytics[C]//Proceedings of the 2nd ACM Sympo- sium on Cloud Computing.Cascais:ACM,2011:18-23.
  • 6Palanisamy B,Singh A,Liu L,et al.Purlieus:locality-aware resource allocation for MapReduce in a cloud[C]//Proceedings of 2011 International Conference for High Performance Computing,Net- working,Storage and Analysis.Seatle:ACM,2011:58-63.
  • 7Alicherry M,Lakshman T V.Optimizing data ac- cess latencies in cloud systems by intelligent virtu- al machine placement[C]//The IEEE Conference on Computer Communications(INFOCOM),2013 Pro- ceedings IEEE.Turin:IEEE,2013:647-655.
  • 8Alicherry M,Lakshman T V.Network aware re- source allocation in distributed clouds[C]//The IEEE Conference on Computer Communications(INFOCOM),2012 Proceedings IEEE.Orlando:IEEEf 2012:963-971.
  • 9Meng X,Pappas V,Zhang L.Improving the scala- bility of data center networks with traffic-aware vir- tual machine placement[C]//The IEEE Conference on Computer Communications(INFOCOM),2010 Proceedings IEEE.San Diego:IEEE,2010:1-9.
  • 10Zaharia M,Borthakur D,Sen S J,et al.Delay scheduling:a simple technique for achieving locality and fairness in cluster scheduling[C]//Proceedings of the 5th European Conference on Computer Sys- tems.Paris:ACM,2010:265-278.

同被引文献14

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部