期刊文献+

纸张印刷墨斑检测方法研究

A New Method to Detect Print Mottle of Papers
下载PDF
导出
摘要 目的基于扫描仪和STFI-Mottling Expert斑纹测试软件,提出一种使用改进型变异系数Mod Co V表征纸张印刷墨斑的新方法。方法纸张表面的印刷墨斑图像通过扫描仪获取,再经过软件分析,从数字图像处理的角度研究印刷斑纹;实验选用新闻纸、双胶纸、铜版纸和喷墨纸等4种纸张,分析不同波长范围和不同方向的印刷墨斑情况。结果使用改进型变异系数Mod Co V表征印刷墨斑,其视觉判定的相关性比使用变异系数Co V表征印刷墨斑的传统方法更好,在研究不同波长的墨斑水平和墨斑取向问题方面也表现出一定的优越性。结论该方法操作简单,能更加客观地对印刷墨斑进行度量,更加方便地解决印刷墨斑所引起的问题,提高了印品质量。 Based on the scanner and STFI-Mottling Expert testing software, a new method using the COVM(modified coefficient of variation) to characterize the print mottle of papers was introduced. The print mottle image on paper surface was acquired through a scanner, and then studied from the perspective of digital image processing through software analysis. The experiment selected newspaper, offset paper, coated paper and inkjet paper to analyze print mottle in different wavelength ranges and different orientations. The method using the modified COVM proposed in this paper could effectively detect printing mottle. The correlation with visual judgment was better than that of traditional methods using the COVM to characterize the print mottle of papers. There were also some advantages in detecting the print mottle within different wavelength ranges and orientations of mottle. In conclusion, the new method is simpler and more objective as compared to the traditional method. It is more convenient to solve the problems caused by print mottle, and then improve the printing quality.
机构地区 华南理工大学
出处 《包装工程》 CAS CSCD 北大核心 2015年第21期108-114,共7页 Packaging Engineering
关键词 变异系数 印刷墨斑 纸张性能 检测方法 coefficient of variation print mottle paper′s property detection method
  • 相关文献

参考文献13

二级参考文献30

  • 1柯丽,张明慧,黄廉卿.基于小波变换的CR图像增强[J].光电子.激光,2005,16(8):989-992. 被引量:17
  • 2刘春林,臧冬娟,张逸新,姜燕.印刷“墨斑”成因分析与控制[J].上海造纸,2007,38(1):19-22. 被引量:6
  • 3刘李鹂,高智勇,刘向明.基于小波分析的红外乳腺图像去噪与增强的实验研究[J].北京生物医学工程,2007,26(3):229-232. 被引量:3
  • 4Nancy Plowman Sandreuter. Predicting print mottle: a method of differentiating between three types of mottle[ J]. Tappi Journal, 1994, 77(7) : 173.
  • 5Laine A, Fan J. Wavelets for contrast enhancement of digital mammography [ J]. IEEE EMB Magazine, 1995, 14 (5) : 556 -550.
  • 6Heinlein P, Drexl J, Schneider W. Integrated wavelets for enhancement of microcalfications in digital mammography [ J ]. IEEE Transactions on Medical Imaging, 2003, 22(3) : 402 -413.
  • 7Kupinski M A, Giger M L. Feature selection and classifiers for the computerized detection of mass lesions in digital mammography [J]. In IEEE Int. Congr, Neural Networks, 1997, 2460 -4:2463.
  • 8Abbass H A. An evolutionary artificial neural networks approach for breast cancer diagnosis [ J]. Artificial Intelligence in Medicine, 2002, 25 (3) : 265 -281.
  • 9Dippel S, Stahl M, Wiemker R, et al. Multiscale contrast enhancement for radiographies: laplacian pyramid versus fast wavelet transform [ J ]. IEEE Trans. Med. Image. , 2002, 21 (4):343- 353.
  • 10Betal D. Extraction of micmcalcifications from digital mammograms using mathematical morphology [ R]. The Institution of Electrical Engineers. Printed and Published by the IEE, Savory Place, Lodon WC2R 0BL,UK, 1993.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部