期刊文献+

高强度聚焦超声图像纹理分析 被引量:2

Texture analysis of high intensity focused ultrasound image
下载PDF
导出
摘要 通过纹理信息分析筛选出合适的纹理特征能为超声图像的目标定位和分割做准备。本文介绍了3种常用的纹理分析方法,并且利用共生矩阵重点对一种新的无创肿瘤治疗技术——高强度聚焦超声(High Intensity Focused Ultrasound,HIFU)治疗中超声图像的纹理信息进行了分析,包括角二阶矩(Angular Second Moment,ASM)、相关性、逆差矩(Inverse Difference Moment,IDM)、熵、对比度、不相似度等。最终确定了3种有效的子宫肌瘤图像纹理特征,即ASM、IDM和相关性。这些特征在肿瘤区域和正常组织之间有明显的差异,ASM和IDM的相对差异都在20%以上,而相关性的相对差异也在5%以上。这3种纹理特征有望运用于HIFU中超声图像的目标定位和分割,但还需要进一步研究噪声对纹理信息的干扰。 Texture information analysis method was applied to screen out proper texture features for the object location and segmentation in ultrasound images. Three commonly used texture analysis methods were introduced in this paper, and the texture information of ultrasound image in a new non-invasion tumor therapy, high intensity focused ultrasound (HIFU) therapy, was analyzed by co-occurrence matrix, including angular second moment (ASM), correlation, inverse difference moment (IDM), entropy, contrast and dissimilarity. ASM, IDM and correlation were finally confirmed as three effective texture features of uterine fibroid images. These three texture features appeared obvious differences between tumor region and normal region. The relative differences of ASM and IDM were higher than 20%, and that of correlation was higher than 5%. These texture features are of good potential to be applied in the object location and segmentation of ultrasound images in HIFU. However, the interference of noise on texture information is needed to be further studied.
作者 龙群芳 张东
出处 《中国医学物理学杂志》 CSCD 2015年第6期830-834,共5页 Chinese Journal of Medical Physics
基金 国家重点基础研究发展计划(973)项目(2011CB707900)
关键词 纹理分析 共生矩阵 高强度聚焦超声治疗 子宫肌瘤 texture analysis co-occurrence matrix high intensity focused ultrasound therapy uterine fibroid
  • 相关文献

参考文献10

  • 1Gonzato G. A practical implementation of the box counting algorithm[J]. Comput Geosci, 1998, 24(1): 95-100.
  • 2Li SZ. Markov random field modeling in image analysis[M]. 3rd ed. London: Springer-Verlag-UK, 2001.
  • 3Comer ML, Delp EJ. Segmentation of textured images using a multiresolution Gaussian autoregressive model[J]. IEEE Trans Image Process, 1999, 8(3): 408-418.
  • 4Haraliek RM. Statistical and structural approaches to texture[J]. Proc IEEE, 1979, 67(5): 786-804.
  • 5Liu X, Wang D. Texture classification using spectral histograms[J]. IEEE Trans Image Process, 2003, 12(6): 661-670.
  • 6Haralick RM, Shanmugam K. Textural features for imagecl- assification[J]. IEEE Trans Syst Man Cy B, 1973, 3(6): 610-621.
  • 7Noble JA, Boukerroui D. Ultrasound image segmentation: A survey [J]. IEEE Trans Med Imaging, 2006, 25(8): 987-1010.
  • 8郭依正,焦蓬蓬,周巧扣,周游.基于灰度共生矩阵的肝脏CT图纹理特征分析[J].实验室研究与探索,2012,31(8):62-64. 被引量:14
  • 9Zhang X, Fujita H, Kanematsu M. Improving the classification of cirrhotic liver by using texture features[C]. Shanghai, Proceedings of the 2005 IEEE: Engineering in Medicine and Biology 27th Annual Conference, 2005: 867-870.
  • 10吴泽晖.B超图象的纹理识别[J].海南大学学报(自然科学版),2001,19(4):337-341. 被引量:6

二级参考文献13

  • 1朱福珍,吴斌.基于灰度共生矩阵的脂肪肝B超图像特征提取[J].中国医学影像技术,2006,22(2):287-289. 被引量:23
  • 2Haralick R M, Shanmugam K, Dinstein I. Texture features for image classification [ J ]. IEEE Transactions on Systems, Man and Cybernetics, 1973, 3(6): 610-621.
  • 3Woods R C. Digital I mage ,processing [ M ]. Second Edition. Bei- jing: Publishing House of Electronics Industry, 2006:532-534.
  • 4Christoph Pahn. Color Texture classification by integrative Co- occurrence matrices[ J ]. Pattern Recognition, 2004,37 ( 5 ) : 965- 976.
  • 5Moses Amadasum, Robert King. Texture feature corresponding to texture properties [ J ]. IEEE Transactions on Systems, Man andCybernetics, 1989,19 (5) : 1264-1274 .
  • 6Equitz W, Niblack W. Retrieving images from a database using texture-algorithms from the QBIC system, technical report. RJ 9805JR], Computer Science, IBM Research Report, 1994.
  • 7Tao Dacheng, Li Xuelong. A set of novel textural features based on 3D co-occurrence matrix for content-based image retrieval [ C ]// International Conference on Information Fusion, 2002, 2: 1403- 1407.
  • 8Christoph Palm. Color texture classification by integrative co- occurrence matrices[ J]. Pattern Recognition, 2004, 37 ( 5 ) :965-976.
  • 9Yeh W C, Huang S W, Li P C, et al. Liver fibrosis grade classification with B-mode ultrasound[ J]. Ultrasound in Medicine and Biology,2003, 29(9) : 1229-1235.
  • 10徐小军,邵英,郭尚芬.基于灰度共生矩阵的火焰图像纹理特征分析[J].计算技术与自动化,2007,26(4):64-67. 被引量:21

共引文献17

同被引文献7

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部