期刊文献+

基于稀疏表示超像素分类的肿瘤超声图像分割算法 被引量:1

Tumor ultrasound image segmentation algorithm based on sparse representation of superpixel clustering
下载PDF
导出
摘要 目的:图像中目标的识别与分割一直是图像处理的研究热点。本文针对超声图像提出了一种新的基于超像素区域特征的肿瘤识别分割算法。方法:首先利用简单线性迭代聚类算法产生超像素,将图像分为多个内部特征相似的图像块,然后提取每个区域的特征组成该区域特征向量,利用稀疏表示分类算法(Sparse Representation Classification,SRC)构造分类器,对超像素进行分类合并,最终识别并分割出完整的感兴趣区域。结果:本文的算法在超声图像中肿瘤的识别与分割中取得较为理想的效果,灵敏度指数平均值达到了83.79%,标准化的Hausdorff距离指数平均值达到了4.80%。结论:本文的分割算法克服了SRC算法不能获得目标区域完整轮廓的缺陷,并取得了较好的实验结果,为超声图像中肿瘤的识别与分割提供了新思路。 Objective Target recognition and segmentation of image has been a hot research topic in image processing. A new tumor segmentation algorithm based on the superpixel area characteristic in ultrasonic image is proposed. Methods Simple linear iterative clustering (SLIC) algorithm was firstly applied to produce superpixel, dividing the .image into multiple image blocks with similar characteristics. And then, the feature of each region was extracted as feature vector. Classifier was constructed by sparse representation classification (SRC) algorithm, classifying and merging the superpixels. Finally, the complete interesting regions were identified and segmented. Results The algorithm for the tumor identification and segmentation in ultrasound image achieved satisfactory effects. The average value of sensitivity index reached 83.79%, and the average value of normal Hausdorff distance reached 4.80%. Conclusion The proposed algorithm overcomes the disadvantage of SRC algorithm which cannot obtain the complete contour of target region, achieving better experimental results and providing a new thought for the tumor recognition and segmentation of ultrasound images.
作者 张绿川 杨艳
出处 《中国医学物理学杂志》 CSCD 2015年第6期855-859,共5页 Chinese Journal of Medical Physics
基金 国家重点基础研究发展计划(973计划)项目(2011CB707900)
关键词 稀疏表示 超声图像 肿瘤分割 简单线性迭代聚类 sparse representation ultrasound image tumor segmentation simple linear iterative clustering
  • 相关文献

参考文献13

  • 1Noble JA, Boukerroui D. Ultrasound image segmentation: A survey [J]. IEEE Trans Med Imaging, 2006, 25(8): 987-1010.
  • 2Marcellin MW, Gormish MJ, Bilgin A, et al. An overview of JPEG- 2000[C]//Proceedings DCC, 2000: 523-541.
  • 3Aharon M, Elad M, Bruckstein A. K-SVD: An algorithm for desi- gning over complete dictionaries for sparse representation[J]. IEEETrans Signal Proc, 2006, 54(11): 4311-4322.
  • 4Wright J, Yang A, Ganesh A, et al. Robust face recognition via sparse representation[J]. IEEE Trans Pattern Anal Mach Intell, 2009, 31(2): 210-227.
  • 5Rosas-Romero R, Tagare HD. Segmentation of endocardium in ult- rasound images based on sparse representation over learned redundant dictionaries[J]. Eng Appl Artif Intel, 2014, 29(3): 201- 210.
  • 6Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared tostate-of-the-art superpixel methods[J]. IEEE Trans Pattern Anal Mach lntell, 2012, 34(11): 2274-2282.
  • 7Yue Y, Tagare HD. Learning to segment using machine learned penalized logistic models[C]//Proeeedings CVPR, 2009: 58-65.
  • 8Shi J, Malik J. Normalized cuts and image segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2000, 22(8): 888-905.
  • 9Comanieiu D, Meer P. Mean shift: A robust approach toward feature space analysis[J]. IEEE Trans Pattern Anal Mach Intell, 2002, 24 (5): 603-619.
  • 10Levinshtein A, Stere A, Kutulakos KN, et al. TurboPixels: Fast superpixels using geometric flows[J]. IEEE Trans Pattern Anal Mach Intell, 2009, 31 (12): 2290-2297.

同被引文献19

  • 1赵暖,陈亚青,余建国,王威琪.超声图像处理中Snake模型研究[J].上海生物医学工程,2004,25(4):3-9. 被引量:5
  • 2刘彩霞,范延滨,杨厚俊.GVF Snake模型中一种新的初始轮廓设置方法[J].计算机应用,2006,26(7):1614-1616. 被引量:8
  • 3KENNEDY J E, TER HAAR G R, CRANSTON D. tligh intensity (bcused ultrasound: surgery of the future?[ J ]. Br J Radiol, 2003, 76 (909): 590-599.
  • 4OSHER S, SETHIAN J A. Fronts propagating with curvature- dependent speed: algorithms based on Hamilton-Jacobi formulations [ J ]. J Comput Phys, 1988, 79( 1 ): 12-49.
  • 5KASS M, WITKIN A, TERZOPOULOS D. Snakes: active coutour models[ J]. Ihi J Comput Vis, 1987, 1(4): 321-331.
  • 6CHANT F, VESE L A. Active contours withoul edges[J ]. IEEE Trans Image Process, 2001, 10(2): 266-277.
  • 7XU M, ZHANG D, YANG Y, et al. A split-and-merge-based uterinefibroid ultrasound image segmentation method in HIFU therapy E J ]. PLoS One, 2015, 10(5): e0125738.
  • 8LIAO X, YUAN Z, ZHENG Q, et al. Multi-scale and shape constra- ined localized region-based active contour segmentation of uterine fibroid ultrasound images in HIFU therapy[J]. PLoS One, 2014, 9(7): e103334.
  • 9XU C, PRINCE J L. Generalized gradient vector flow external forces for active contours 1 [J]. IEEE Trans Signal Process, 2000, 71(2): 131-139.
  • 10ZIMMER Y, TEPPER R, AKSELROD S. A two-dimensional extension of minimum cross entropy thresholding for the segmentation of ultrasound images[J]. Ultrasound Med Biol, 1996, 22(9): 1183-1190.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部