期刊文献+

一种改进Papoulis-Gerchberg的多幅超分辨重构方法 被引量:4

An improved Papoulis-Gerchberg algorithm for multiframe super-resolution reconstruction
下载PDF
导出
摘要 为进一步提高拍摄图像的分辨率,提出一种改进的Papoulis-Gerchberg超分辨算法.新算法提出边缘检测方法,可以改善传统方法空间复杂度和重构图像边缘模糊的问题.新算法在原有的算法基础上融于边缘检测,针对多幅同一场景输入图像,在每次Papoulis-Gerchberg迭代过程加入坎尼检测,同时将每步的重构误差投影到下一步重构过程,降低了算法空间复杂度,能有效恢复丢失的边缘高频信息.MATLAB实验结果表明,与现有的经典超分辨重构方法相比,本算法反映图像质量的峰值信噪比和灰度标准差更高,信噪比和灰度标准差比改进前算法分别提高0.5 d B和2.5.从视觉感官上对比,重构图像整体效果也更加清楚,去除了原始重构方法图像边缘叠影现象,有效提高了原始输入图像的分辨率. In order to enlarge a low resolution image clearly,an improved Papoulis-Gerchberg super-resolution method was proposed to solve the space complexity and the edge blurring phenomenon of reconstruction results. More specifically,the proposed algorithm uses edge detection operator,and canny detection is also joined in every Papoulis-Gerchberg iterative process,while reconstruction error is projected to next iterative process,such that the space complexity can be reduced and the lost high-frequency edge information can be recovered effectively. MATLAB experimental results show that the PSNR and the gray standard deviation improve 0.5 d B and 2.5,respectively,with comparison to the conventional Papoulis-Gerchberg method. Furthermore,the proposed algorithm can reconstruct multi-frame Low-Resolution images of same scene more accurately and the visual quality of the reconstruction image is clearer that the conventional one,and the proposed algorithm can also eliminate edge shadow and obtain a clear highresolution image.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2015年第10期118-123,共6页 Journal of Harbin Institute of Technology
基金 国家自然科学青年基金(60902067) 吉林省重大科技攻关项目(11ZDGG001)
关键词 超分辨率 边缘检测 重构误差 多幅图像 峰值信噪比 super-resolution edge detection reconstruction error multi-frame images peak signal to noise ration
  • 相关文献

参考文献18

  • 1TSAI R Y, HUANG T S. Muhiframe image restoration and registration[J].Advances in Computer Vision and Image Processing, 1984, 1: 317-339.
  • 2IRANIM, PELEG S. Improving resolution by image registration [J]. Graphical Model and Image Processing, 1991,53(3) : 231-239.
  • 3CI-IEESEMAN P, KANEFSKY B, KRAFY R, et al. Super- resolved surface reconstruction from multiple images [M]. Santa Barbara, California: Maximum Entropy and Bayesian Methods, 1996.
  • 4HARDIER C, BARNARD K J, ARMSTRONG E E. Joint MAP registration and high-resolution image estimation using a sequence of undersampledImages [J].IEEE Transactions on Image Processing, 1997, 6(12) : 1621-1633.
  • 5FARSIU S, ROBINSON M D, ELAD M, et al. Fast and robust mnltiframe super resolution[J].IEEE Transactions on Image Processing, 2004, 13(10) : 1327-1344.
  • 6PROTFER M, ELAD M, TAKEDA H, et al. Generalizing the nonlocal-means to super-resolution reconstruction [J]. IEEE Transactions on Image Processing, 2009, 18( 1): 36-51.
  • 7李家德,张叶,贾平.采用非局部均值的超分辨率重构[J].光学精密工程,2013,21(6):1576-1585. 被引量:16
  • 8ZHANG Kaibing, GAO Xinbo, LI Xuelong, et al. Partially supervised neighbor embedding for example-based image super-resolution [J]. IEEE Journal of Selected Topics inSignal Processing, 2011,5(2) : 230-239.
  • 9TAI S C, KUO T M, IAO C H, et al. A fast algorithm for single-image super resolution in both wavelet and spatial domain [C]// Proceedings of the 2012 International Symposium on Computer, Consumer and Control. Washington, DC: IEEE Computer Society, 2012:702-705.
  • 10GERCHBERG R W. Super-resolution through error energy reduction[J]. Optica Acta, 1974, 21(9) :709- 720.

二级参考文献35

  • 1TSAI R Y, HUANG T S.Multiframe image restoration and registration[J].Advances in Computer Vision and Image Processing,1984,1: 317-339.
  • 2ELAD M, FEUER A.Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images [J].IEEE Transactions on Image Processing,1997, 6(12): 1646-1658.
  • 3ELAD M, HEL-OR Y.A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur[C].Israel,2000:402-405.
  • 4HARDIE R C, BARNARD K J, ARMSTRONG E E.Joint MAP registration and high-resolution image estimation using a sequence of undersampled images[J].IEEE Transactions on Image Processing, 1997, 6(12): 1621-1633.
  • 5RAJAN D, CHAUDHURI S.An MRF-based approach to generation of super-resolution images from blurred observations [J].Springer Netherlands, 2002,16:5-15.
  • 6CHEESEMAN P, KANEFSKY B, KRAFT R, et al..Super-resolved surface reconstruction from multiple images [C].Santa Barbara, California,1996:293-308.
  • 7NHAT N, MILANFAR P, GOLUB G.A computationally efficient superresolution image reconstruction algorithm[J]. IEEE Transactions on Image Processing, 2001, 10(4): 573-583.
  • 8FARSIU S, ROBINSON M D, ELAD M, et al..Fast and robust multiframe super resolution[J]. IEEE Transactions on Image Processing, 2004, 13(10): 1327-1344.
  • 9ZOMET A, RAV-ACHA A, PELEG S.Robust super-resolution[C].Kauai,2001:645-650.
  • 10ZHANG L, YUAN Q, SHEN H, et al..Multiframe image super-resolution adapted with local spatial information [J].Journal of the Optical Society of America A, 2011, 28(3): 381-390.

共引文献15

同被引文献42

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部