期刊文献+

随机波动率模型下欧式回望期权定价 被引量:4

Valuation on European Lookback Option under Stochastic Volatility Model
下载PDF
导出
摘要 本文考虑标的股价满足Hull-White随机波动率模型的浮动执行价格的欧式回望期权定价。应用Taylor展开技术,获到了回望看涨期权价格及其Δ对冲的近似显示解公式。数值结果表明,近似显示解公式与Monte Carlo模拟法相比具有很好的准确性和有效性,且易于实际应用。最后,利用数值实例分析了期权价格和Δ对冲策略受波动率模型中各主要参数的影响。 The valuation on European lookback option with floating strike price is considered under theHull-White stochastic volatility model. Using the Taylor series expansion technique, the approximatedexplicit formulas for the price and delta value of the European lookback option are obtained. Numericalexperiments show that the proposed explicit formula performs accurately and efficiently compared withMonte Carlo simulation, and is easy to implement in practice. Finally, the impacts of the key parametersin the volatility process on both the option price and its delta value are analyzed through numericalexamples.
作者 徐蕾 邓国和
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2015年第3期79-90,共12页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11461008) 教育部人文社会科学研究规划基金资助项目(13YJA910003) 广西自然科学基金资助项目(2013GXNSFAA019005) 广西高等学校科学技术研究重点项目(2013ZD010)
关键词 HULL-WHITE模型 回望期权 Taylor展开技术 MONTE CARLO模拟 Hull-White model lookback options Taylor series expansion technique Monte Carlo simulation
  • 相关文献

参考文献21

  • 1HE Hua, KEIRSTEAD W P, REBBOLZ J. Double lookbacks[J]. Mathematical Finance, 1998, 8(3) : 201-228.
  • 2LEE H. Pricing equity-indexed annuities with path-dependent options[J]. Insurance: Mathematics and Economics, 2003, 33(3): 677-690.
  • 3HYER T, LIPTON-LIFSCHITZ A, PUGACHEVSKY D. Passport to success[J]. Risk, 1997, 10(9):127-131.
  • 4GOLDMAN M B, SOSIN H B, GATTO M A. Path dependent options: buy at the low, sell at the high[J]. Journal of Finance, 1979, 34(5): 1111-1127.
  • 5CONZE A, VISWANATHAN R. Path dependent options: the case oflookback options[J].Journalof Finance, 1991, 46(5): 1893-1907.
  • 6BLACK F, SCHOLESM. The pricing of options and corporateliabilities[J]. The Journal of Political Economy, 1973, 81(3): 637-654.
  • 7DAI Min, WONG H Y, KWOK Y K. Quanto lookback options[J]. Mathematical Finance, 2004, 14(3) : 445-467.
  • 8WONG H Y, KWOK Y K. Sub-replication and replenishing premium: efficient pricing of multi-state lookbacks[J]. Review of Derivatives Research, 2003, 6(2): 83-106.
  • 9HEYNEN R C, KAT H M. Lookback options with discrete and partial monitoring of the underlying price[J]. Appl Math Finance, 1995, 2(4): 273-284.
  • 10BUCHEN P, KONSTANDATOS O. A new method of pricing lookback options[J].Mathematical Finance, 2005, 15 (2): 245-259.

二级参考文献4

共引文献7

同被引文献31

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部