期刊文献+

局部波动特征分解及其在齿轮包络分析中的应用 被引量:3

Local oscillatory-characteristic decomposition and its application to gear envelope analysis
下载PDF
导出
摘要 提出了一种新的自适应非平稳信号分析方法——局部波动特征分解(Local Oscillatory-Characteristic Decomposition,LOD),该方法以信号本身的时间尺度特征为基础,并采用微分、坐标域变换、分段线性变换等运算手段将信号分解为一系列瞬时频率具有物理意义的单一波动分量(Mono-Oscillatory Component,MOC),非常适合于处理多分量信号。在详细说明LOD分解原理的基础上,通过对仿真信号的分析将LOD和经验模态分解(Empirical Mode Decomposition,EMD)进行了对比,结果表明了LOD的优越性。同时,针对多分量调制的齿轮故障振动信号在包络分析中的特点,将LOD应用于齿轮故障振动信号的分析,对齿轮实验信号和实际信号的分析结果表明,LOD可以有效地应用于齿轮的包络分析。 A new self-adaptive nonstationary signal analysis method named local oscillatory-characteristic decomposition(LOD)is proposed.This method is based on time-scale characteristics of signal itself,and it uses kinds of operations such as differential,coordinates domain transformation and piecewise linear transformation to decompose the signal into a series of mono-oscillatory components(MOC)whose instantaneous frequency has physical meanings,and thus especially suitable for multi-component signal processing.On the basis of illustrating the decomposition principle of LOD in detail,the LOD is compared with the empirical mode decomposition(EMD)by analyzing the simulated signal.The results show the advantages of LOD.Meanwhile,taking account of the characteristics of multi-component modulated gear fault vibration signal in envelope analysis,the LOD is applied to the gear fault vibration signals analysis.The analytical results from experimental gear signal and actual gear signal demonstrate that the LOD apply to gear envelope analysis effectively.
出处 《振动工程学报》 EI CSCD 北大核心 2015年第5期846-854,共9页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(51305046) 能源高效清洁利用湖南省高校重点实验室开放基金资助项目(2013NGQ007)
关键词 故障诊断 齿轮 时间尺度特征 局部波动特征分解 包络分析 fault diagnosis gear time-scale characteristic local oscillatory-characteristic decomposition envelope anslysis
  • 相关文献

参考文献14

  • 1于德介,程军圣,杨宇.Hilbert-Huang变换在齿轮故障诊断中的应用[J].机械工程学报,2005,41(6):102-107. 被引量:77
  • 2毕果,陈进,何俊,周福昌.基于相关分析的包络技术在齿轮特征信息识别中的应用[J].机械科学与技术,2007,26(4):408-411. 被引量:3
  • 3Saravanan N, Ramachandran K I. Fault diagnosis of spur bevel gear box using discrete wavelet features and decision tree classification[J]. Expert Systems with Applications, 2009, 36(5): 9 564-9 573.
  • 4Rafiee J, Tse P W. Use of autocorrelation of wavelet coefficients for fault diagnosis[J-]. Mechanical Systems and Signal Processing, 2009, 23(5): 1 554-1 572.
  • 5Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A, 1998, 454: 903-995.
  • 6Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: The Hilbert spectrum[J]. Annu. Rev. Fluid Mech. ,1999,31 : 417-457.
  • 7Jonathan S Smith. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface, 2005, 2(5): 443-454.
  • 8Cheng Junsheng, Yu Dejie, Yang Yu. Research on the intrinsic mode function (IMF) criterion in EMD method [ J ]. Mechanical Systems and Signal Processing, 2006, 20(4): 817-824.
  • 9Pegram G G S, Peel M C, McMahon T A. Empirical mode decomposition using rational splines., an application to rainfall time series[J]. Proceedings of the Royal Society A, 2008, 464:1 483-1 501.
  • 10Wu Zhaohua, Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1 (1) : 1-41.

二级参考文献32

  • 1王延春,谢明,丁康.包络分析方法及其在齿轮故障振动诊断中的应用[J].重庆大学学报(自然科学版),1995,18(1):87-91. 被引量:25
  • 2程军圣,于德介,杨宇.基于支持矢量回归机的Hilbert-Huang变换端点效应问题的处理方法[J].机械工程学报,2006,42(4):23-31. 被引量:75
  • 3田涛,丁康.希尔伯特变换及其在故障诊断中的应用[J].振动与冲击,1996,15(2):23-27. 被引量:26
  • 4贝兹JA.信号处理、调制与噪声[M].北京:人民邮电出版社,1985..
  • 5Smith J S. The Local Mean Decomposition and Its Application to EEG Perception Data[J]. Journal of the Royal Society Interface,2005,2(5) :443-454.
  • 6Huang N E,Shen Z,Long S R,et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non--stationary Time Series Analysis[J].Proc. R. Soc. Lond. A,1998,454:903-995.
  • 7Huang N E, Shen Z, Long S R. A New View of Nonlinear Water Waves: the Hilbert Spectrum[J]. Annu. Rev. Fluid Mech. ,1999,31:417-457.
  • 8Jonathan S Smith.The local mean decomposition and its application to EEG perception data[J].Journal of the Royal Society Interface,2005,2(5):443-454.
  • 9Boashash B.Estimating.and interpreting the instantaneous frequency of a signal-part 1:Fundamentals[J].Proc.IEEE,1992,80(4):520-538.
  • 10Pegram G G S,Peel M C,McMahon T A.Empirical mode decomposition using rational splines:an application to rainfall time series[J].Proceedings of the Royal Society A,2008,464(3):1 483-1 501.

共引文献136

同被引文献10

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部