期刊文献+

多组分溶液近红外光谱检测算法研究

Research on the Detection Algorithm of Multi- component Solution Near Infrared Spectrum
下载PDF
导出
摘要 利用下一代红外光谱检测仪MEMS-FTIR,在基于近红外波段1 000—2 100 nm区域对多组分糖溶液进行检测,通过开源平台的R语言对实验中的近红外光谱数据进行数据分析和PLS算法研究,为下一代快速、便携式、移动平台光谱数据分析奠定基础。本次研究主要使用具有开源性质的R语言和近红外光谱PLS算法,PLS算法可以显著提高近红外光谱回归模型的有效性。在建立回归模型后,对模型的RMSEP系数和R2系数进行分析和比较,结果表明建立的多组分糖浓度的PLS回归模型拟合程度较高。 This paper uses the next generation NIR spectrometer( MEMS- FTIR) to detect the multi- component sugar concentration,based on the near- infrared wavelength from 1000 nm to 2100 nm. R language and PLS algorithm are applied to the NIR spectrum experiment to make regression modeling and data analysis; thus the experiment sets a foundation for the next generation of rapid,portable,multi- platform spectral data analysis. In the process of regression modeling and data analysis,the paper uses the R language which is open- source and the NIR PLS algorithm,and the PLS algorithm could significantly improve the effectiveness of NIR regression modeling. After regression modeling,the model of RMSEP and R2 coefficient are analyzed and compared,and the result of analysis shows that the PLS regression model of multi- component sugar solution has the better fitting effect.
作者 金秀 李绍稳
出处 《重庆科技学院学报(自然科学版)》 CAS 2015年第5期80-83,共4页 Journal of Chongqing University of Science and Technology:Natural Sciences Edition
基金 国家自然科学基金项目农业领域(茶学)"云本体建模理论与方法研究"(31271615)
关键词 FTIR 近红外线 PLS算法 回归模型 R LANGUAGE FTIR NIR PLS algorithm regression model R language
  • 相关文献

参考文献7

  • 1Henry M C. Infrared Spectroscopy for Food Quality Analy- sis and Control [ M ]. Elsevier Inc, 2009:37 - 40.
  • 2Griffiths P R, Haseth J. Fourier Transform Infrared Spec- trometry [M]. [s. 1. ] Wiley, 2007:297-302.
  • 3王惠文,张志慧,Tenenhaus M.成分数据的多元回归建模方法研究[J].管理科学学报,2006,9(4):27-32. 被引量:26
  • 4齐琛,方秋莲.偏最小二乘建模在R软件中的实现及实证分析[J].数学理论与应用,2013,33(2):103-111. 被引量:22
  • 5Pereira A F C, Pontes M J C. NIR Spectrometric Determi- nation of Quality Parameters in Vegetable Oils Using iPLS and Variable Selection [ J ]. Food Research International, 2008,41 (4) :341 - 348.
  • 6Giangiacomo R. Study of Water-sugar Interactions at In- creasing Sugar Concentration by NIR Spectroscopy [ J ]. Food Chemistry, 2006,96 (3) : 371 - 379.
  • 7Wu Z Z, Xu E B. Rapid Determination of Process Varia- bles of Chinese Rice Wine Using FT - NIR Spectroscopy and Efficient Wavelengths Selection Methods [ J]. Food A- nalysis Methods, 2014(2) : 1 - 12.

二级参考文献14

  • 1Ferrers N M.An Elementary Treatise on Trilinear Coordinates[M].London:Macmillan,1866.
  • 2Aitchison J.The Statistical Analysis of Compositional Data[M].London:CHAPMAN AND HALL,1986.
  • 3Wold H.Partial Least Squares,Encyclopedia of Statistical Sciences,vol.6,Kotz,S & Johnson,N.L.(Eds),New York:John Wiley & Sons,1985.581-591.
  • 4Lohmoller J B.Latent Variables Path Modeling with Partial Least Squares[M].Heildelberg:Physica-Verlag,1989.
  • 5Joreskog K G.A general method for analysis of covariance structure[J].Biometrika,1970,57:239-251.
  • 6Bjcm - Helge Mevik. Ron Wehrens. Kristian Hovde Liland. Partial Least Squares and Principal Component re- gression [ M/OL ]. http ://mevik. net/work/software/pls, htm1,2011 - 11 - 27.
  • 7Randall D. Tobias. An Introduction to Partial Least Squares Regression [ J/OL]. http://support, sas. com/ techsup/tech note/tsS09, pdf.
  • 8B. Eforn. C. Stein. Tthe Tackknife Estimate Of Variance [ J ]. The Annals of Statistics, 1981.
  • 9Sophia Yuditskaya. An Overview of Methods in Linear Least- Squares Regression[J]. Pattern Recognition and Analysis,2010,11.
  • 10Bootstrap and Jackknife Estimation of Sampling Distributions [ M/OL]. http ://www. stat. washington, edu/jaw/ COURSES/580s/581/LECTNOTES/ch8. pdf.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部