期刊文献+

考虑医院病床数的SIR模型的分支分析

Bifurcations of an SIR Epidemic Model with the Impact of the Number of Hospital Beds
原文传递
导出
摘要 建立了具有标准发生率且考虑医院病床数的SIR模型,并对其性态进行了分析.通过分析,发现R_0不再是疾病流行的阈值,并且当医院的病床数小到一定值时模型就会出现后向分支和鞍结点分支.通过数值模拟可以看出当病床数b减少时,模型会呈现出一系列复杂的动力学性态,如:Hopf分支,BT分支和同宿轨分支.通过对模型的研究与分析可以看出医院的病床数是一个极其重要的因素,当R0<1时,通过增加医院的病床数是可以消灭疾病的;当R_0>1时通过增加病床数可以使得疾病得到控制不会出现一些复杂的发展趋势. In this paper, we establish and study an SIR model with a standard incidence rate and a nonlinear recovery rate defined as a function of the number of the beds and infected. For the model, we find that the reproduction number R0 is not a threshold parameter and when the number of the beds is low, the model undergoes Backward bifurcation. By numerical simulation, it is shown that model undergoes Hopf bifurcation, Bogdanov-Taken bifurcation and Homoclinic bifurcation when the number of the beds is too small. By simulation and analysis, we find that the number of the beds is a important factor, when R0 〈 1, the epidemic can be eliminated by increasing the number of the beds; when R0 〉 1, the epidemic can be controlled by the same method.
机构地区 中北大学理学院
出处 《数学的实践与认识》 北大核心 2015年第20期182-188,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(11201434 61379125) 山西省回国留学人员科研资助项目(2013-087) 山西省留学回国人员科技活动择优资助项目
关键词 SIR模型 医院病床数 后向分支 HOPF分支 BT分支 同宿轨分支 SIR model backward bifurcation hopfbifurcation bogdanov-taken bifurcation homoclinic bifurcation
  • 相关文献

参考文献9

  • 1Brauer F, Castillo-Chavez C, Castillo-Chavez C. Mathematical models in population biology andepidemiology[M]. New York: Springer, 2001.
  • 2Heesterbeek J A P. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation[M]. John Wiley Sons, 2000.
  • 3Hethcote H W. The mathematics of infectious diseases[J]. SIAM review, 2000, 42(4): 599-653.
  • 4Capasso V, Serio G. A generalization of the Kermack-McKendrick deterministic epidemic model[J]. Mathematical Biosciences, 1978, 42(1): 43-61.
  • 5Liu W, Levin S A, Iwasa Y. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J]. Journal of Mathematical Biology, 1986, 23(2): 187-204.
  • 6Liu W, Hethcote H W, Levin S A. Dynamical behavior of epidemiological models with nonlinear incidence rates[J]. Journal of Mathematical Biology, 1987, 25(4): 359-380.
  • 7Ruan S, Wang W: Dynamical behavior of an epidemic model with a nonlinear incidence rate[J]. Journal of Differential Equations, 2003, 188(1): 135-163.
  • 8Shah C, Zhu H. Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds[J]. Journal of Differential Equations, 2014, 257(5): 1662-1688.
  • 9Van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1): 29-48.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部