期刊文献+

一种动态的梯度向量流模型 被引量:2

A Dynamic Gradient Vector Flow Model
下载PDF
导出
摘要 传统的基于梯度向量流的活动轮廓模型只能产生静止不变的外力场,外力场中普遍存在"平衡问题",导致轮廓曲线难以收敛到长凹形边界.为此,文中提出了一种动态的梯度向量流模型.该模型首先利用与演化轮廓曲线相关的示性函数对边缘梯度图进行加权并扩散生成一个动态力场,然后利用边界停止函数控制演化轮廓曲线的收敛.该模型充分利用了演化轮廓曲线的信息,避免了静态外力场因"平衡问题"导致的过早收敛问题,能够驱使轮廓曲线收敛到凹形边界.仿真实验结果表明,相比于传统的模型,文中模型能成功地分割出目标的长凹形边界,并且对复杂目标边界也有较好的分割效果. Traditional active contour models based on the gradient vector flow can only produce static force field,in which the equilibrium problem often occurs and it causes a difficulty in the convergence of the contour curve to a long concave boundary.In order to solve this problem,a dynamic gradient vector flow model is proposed in this pa-per.In the model,first,a dynamic force field is generated by adopting an indicative function relevant to the evol-ving contour curve to weigh the edge gradient map.Then,the edge stopping function is employed to control the convergence of the evolving contour curve.The proposed model makes full use of the information of the evolving contour curve,and thus it avoids the premature convergence caused by the equilibrium problem of static external force field and pushes the contour to evolve to the concavity boundary.Simulation results show that,in comparison with the traditional models,the proposed model can segment the long concave boundary of the object successfully and achieves better segmentation results in extracting the complex boundary of the object.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第9期20-26,33,共8页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61372142) NSFC-广东省政府联合基金资助项目(U1401252) 广东省科技计划项目(2013A011403003 2013B010102004) 华南理工大学中央高校基本科研业务费专项资金资助项目(2014ZG0037)~~
关键词 图像分割 活动轮廓模型 动态梯度向量流 image segmentation active contour model dynamic gradient vector flow
  • 相关文献

参考文献17

  • 1Kass M, Witkin A, Terzopoulos D. Snakes : active contour models [J]. International Journal of Computer Vision, 1987,1 (4) :321-331.
  • 2Xu C Y, Prince J L. Snakes, shapes, and gradient vector flow [ J]. IEEE Transactions on Image Processing, 1998,7 ( 3 ) : 359-369.
  • 3Xu C, Prince J L, Generalized gradient vector flow exter- nal forces for active contours [J]. Signal Processing, 1998,71 (2) :131-139.
  • 4Nakhmani A,Tannenbaum A. Self-crossing detection and location for parametric active contours [ J]. IEEE Trans- actions on Image Processing, 2012,21 ( 7 ) : 3150-3156.
  • 5Caselles V, Kimmel R, Sapiro G. Geodesic active contour [ J ]. International Journal of Computer Vision, 1997,22 (1) :61-79.
  • 6Wonjun K, Changick K. Active contours driven by the sa- lient edge energy model [ J]. IEEE Transactions on hnage Processing, 2013,22 ( 4 ) : 1667-1673.
  • 7Chan T, Vese L. Active contours without edges [ J ]. IEEE Transactions on Image Processing, 2001,10 ( 2 ) : 266-277.
  • 8Bresson X,Esedoglu S, Vandergheynst P,et al. Fast global minimization of the active contour/snake model [ J ].Jour- nal of Mathematical Imaging and Vision, 2007,28 ( 2 ) : 151-167.
  • 9Brown E,Chan T, Bresson X. Completely convex formula- tion of the Chan-Vese image segmentation model [ J]. In- ternational Journal Computer Vision, 2012,98 ( 1 ) : 103- 121.
  • 10Zhang K, Zhang L, Song H, et al. Re-initialization free level set evolution via reaction diffusion [J].IEEE Transactions on Image Processing, 2013,22 ( 1) : 258- 271.

二级参考文献15

  • 1王大凯,侯榆青,彭进业.图像处理的偏微分方程方法[M].北京:科学出版社,2010.
  • 2Kass M, Witkin A, Terzopoulus D. Snakes : active contourmodel [ J ]. International Journal of Computer Vision,1988,1(4) :321-331.
  • 3Paragios N,Deriche R. Geodesic active contours and levelsets for the detection and tracking of moving objects [ J].IEEE Transactions on Pattern Analysis and Machine Inte-lligence, 2000,22(3) :266-280.
  • 4Xu C, Prince J. Snakes, shapes, and gradient vector flow[J]. IEEE Transactions on Image Processing,1998,7(3):359-369.
  • 5Ning J,Wu C K,Liu S,et al. NGVF:an improved externalforce field for active contour model [ J]. Pattern Recogni-tion Letters, 2007,28:58-63.
  • 6Wang Y,Liu L,Zhang H,et al. Image segmentation usingactive contours with normally biased GVF external force[J]. IEEE Signal Processing Lettters,2010,17( 10) :875-879.
  • 7Xie X, Mirmehdi M. MAC: magnetostatic active contourmodel [ J]. IEEE Transactions on Pattern Analysis andMachine Intelligence,2008,30(4) ;632-647.
  • 8Xie S L,Zeng D L,Zhou Z H,et al. Arranging and inter-polating sparse unorganized feature points with geodesiccircular arc [ J]. IEEE Transactions on Image Processing,2009,18(3) :582-595.
  • 9Wang T,Cheng I,Basu A. Fluid vector flow and applica-tions in brain tumor segmentation [ J]. IEEE Transactionson Biomedical Engineering,2009,56(3) :781-789.
  • 10Li B,Acton S T. Active contour external force using vec-tor field convolution for image segmentation [ J ]. IEEETransactions on Image Processing, 2007,16 (8 ) : 2096-2106.

共引文献3

同被引文献18

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部