期刊文献+

基于加权欧氏距离度量的目标再识别算法 被引量:28

Object Re-Identification Algorithm Based on Weighted Euclidean Distance Metric
下载PDF
导出
摘要 针对传统欧氏距离在特征相似性度量中存在区分能力弱的缺陷,提出了基于加权欧氏距离度量的目标再识别算法.首先,针对现有目标再识别算法中目标分割易受衣着和背景颜色干扰的缺陷以及忽略人体头部特征的现象,提出了一种简单的比例分割方法,即根据VIPeR和i-LIDS数据集上目标各部件的比例统计将目标按比例分割成3部分.然后提取各部件的多种互补特征来增加其对光照变化等因素的鲁棒性.在部件特征描述过程中,文中提出了以显著性因子为权重的显著性局部二值模式(SLBP)特征来增加局部二值模式(LBP)特征对目标显著性的描述.最后综合各部件的相似性度量结果来判断目标是否匹配.在VIPeR和i-LIDS数据集上的对比实验结果显示,文中算法的目标再识别准确率优于其他算法. As the traditional Euclidean distance has a weak distinctive ability in the feature similarity measure,an object re-identification algorithm based on the weighted Euclidean distance metric is proposed.First,aiming at the problems of the existing object re-identification algorithm,which are that the object segmentation is sensitive to clothing and background color and the human head information is ignored,a simple segmentation method is pro-posed,which divides a person into three parts according to the statistics of the proportion of each part in VIPeR and i-LIDS data-sets.Then,various complementary features of each part are extracted to improve the robustness of the proposed algorithm to illumination changes and other factors.A significant local binary pattern (SLBP)with a sig-nificant factor as the weight is proposed to increase the description ability of the local binary pattern (LBP)to the significance of the object in the part feature description process.Finally,the comprehensive result of the similarity measure of each part is used to determine whether the object is matched.The results of comparative experiments on VIPeR and i-LIDS datasets show that the proposed algorithm is superior to other algorithms in terms of accuracy.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第9期88-94,共7页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(51408237)~~
关键词 加权欧氏距离 目标再识别 相似性度量 人体再识别 显著性LBP 特征 weighted Euclidean distance object re-identification similarity measure person re-identification significant local binary pattern
  • 相关文献

参考文献20

  • 1Bedagkar-Gala A,Shah S K. A survey of approaches and trends in person re-identification [ J ]. Image and Vision Computing,2014,32 (4) :270-286.
  • 2Wang X. Intelligent multi-camera video surveillance:a re- view [ J ]. Pattern Recognition Letters,2013,34 ( 1 ) : 3-19.
  • 3黄凯奇,陈晓棠,康运锋,谭铁牛.智能视频监控技术综述[J].计算机学报,2015,38(6):1093-1118. 被引量:399
  • 4Zhao R, Ouyang W, Wang X. Unsupervised salience lear- ning for person re-identification [ C ] //Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland : IEEE, 2013 : 3586-3593.
  • 5Layne R, Hospedales T M, Gong S. Towards person identi- fication and re-identification with attributes [ C ] //Pro- ceedings of Computer Vision-ECCV 2012 Workshops and Demonstrations. Berlin/Heidelberg : Springer,2012:402-412.
  • 6Liu C, Gong S, Loy C C. On-the-fly feature importance mining for person re-identification [ J]. Pattern Recogni- tion,2014,47 (4) : 1602-1615.
  • 7曾明勇,吴泽民,田畅,付毅,揭斐然.基于外观统计特征融合的人体目标再识别[J].电子与信息学报,2014,36(8):1844-1851. 被引量:21
  • 8Prosser B,Zheng W S, Gong S, et al. Person re-identifica- tion by support vector ranking [ C ]//Proceedings of the British Machine Vision Conference. Aberystwyth : BMVC, 2010 : 1-11.
  • 9Satta R, Fumera G, Roll F. Fast person re-identification based on dissimilarity representations [J]. Pattern Recog- nition Letters,2012,33(14) :1838-1848.
  • 10Dikmen M,Akbas E,lquang T S, et al. Pedestrian recog- nition with a learned metric [ M ]//Proceedings of 2010 Asian Conference on Computer Vision. Berlin/Heidel- berg : Springer, 2011 : 501-512.

二级参考文献312

  • 1王素玉,沈兰荪.智能视觉监控技术研究进展[J].中国图象图形学报,2007,12(9):1505-1514. 被引量:82
  • 2Doretto G, Sebastian T, Tu P,et al.. Appearance-based person reidentification in camera networks: problem overview and current approaches [ J ]. Journal of Ambient Intelligence and Humanized Computing, 2011, 2 (2) : 127-151. [DOI: 10. 1007/s12652- 010-0034-y].
  • 3Cai Y, Pietikaincn M. Person re-identification based on global color context [ C ]//ACCV 2010 International Workshops. Berlin Heidelberg: Springer, 2011 : 205-215.
  • 4Brnn L, Conte D, Foggia P, et al. People re-identification by graph kernels methods [ C ]//Graph-Based Representations in Pattern Recognition. Berlin Heidelberg : Springer ,2011:285 -294.
  • 5Bak S, Corvee E, Bremond F, et al. Person re-identification using spatial covariance regions of human body parts [ C ]// Pro- ceedings of the 7th IEEE International Conference on Advances on Video and Signal-Based Surveillance. Boston, MA, USA: IEEE Computer Society, 2010:435-440.
  • 6Farenzena M, Bazzani L, Perian A, et al. Person re-identification by symmetry-driven accumulation of local features [ C ]// Pro- ceedings uf the IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE Computer Society, 2010:2360-2367.
  • 7Aziz K E, Merad D, Fertil B. People re-identification across multiple non-overlapping cameras system by appearance classifi- cation and silhouette part segmentation [ C ]// Proceedings of the 8th IEEE International Conference un Advanced Video and Signal-based Surveillance. Klagenfurt, Austria: IEEE Computer Society, 2011 : 303-308.
  • 8Banml M,Stiefelhagen R. Evaluation of local features for person re-identification in image sequences [ C ]// Proceedings of the International Conference on Advanced Video and Signal-based Surveillance . Klagenfurt, Austria : IEEE Computer Society,2011:291-296.
  • 9Bak S, Corvee E. Bremond F, et al. Person re-identification using haar-based and DCD-based signature[ C ]//Proceedings of the International Conference on Advanced Video and Signal Based Surveillance . Washington, DC, USA : IEEE Computer Society, 2010 : 1-8.
  • 10Gray D, Tao H. Viewpoint invariant pedestrian recognition with an ensemble of localized features[ C ]// Proceedings of the 10th European Conference on Computer Vision. Berlin Heidelberg: Springer, 2008:262-275.

共引文献618

同被引文献164

引证文献28

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部