期刊文献+

2n阶常微分方程周期边值问题解的存在唯一性

Existence and uniqueness for periodic boundary value problems of 2nth-order ordinary differential equations
下载PDF
导出
摘要 研究2n阶非线性常微分方程周期边值问题{u(2n)(t)+au(t)=f(t,u(t),u′(t),…,u(2n-1)(t)),t∈I,u(i)(0)=u(i)(2π),i=0,1,…,2n-1解的存在唯一性,其中n≥1是整数,I=[0,2π],(-1)na>0,f:I×R2n—→R连续且关于t以2π为周期.运用Fourier分析法和Leray-Schauder不动点定理,获得了当非线性项f满足适当增长条件时,该问题解的存在唯一性结果. This paper deals with the existence and uniqueness of solutions for 2nth-order ordinary differential equation with periodic boundary value conditionu{(2n)(t)+au(t)=f(t,u(t),u′(t),…,u(2n-1)(t)),t∈I,u(i)(0)=u(i)(2π),i=0,1,…,2n-1.Where n≥1is a integer,I=[0,2π],(-1)na0,f:I×R2n →Ris continuous and 2π-peridoic with respect to t.By applying the Fourier analysis method and Leray-Schauder fixed point theorem,the results of existence and uniqueness are obtained when the nonlinearity fsatisifies proper growth conditions.
作者 李永祥 白静
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2015年第6期6-9,共4页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(11261053) 甘肃省自然科学基金资助项目(1208RJZA129)
关键词 Fourier分析法 LERAY-SCHAUDER不动点定理 周期边值问题 解的存在唯一性 Fourier analysis method Leray-Schauder fixed point theorem periodic boundary valueproblem existence and uniqueness of solutions
  • 相关文献

参考文献8

  • 1JIANG Da-qing, FAN Meng, WAN A-ying. A monotone method for constructing extremal solutions to second-order periodic boundary value problems[J]. J Corn Appl Math, 2001, 136(1): 189.
  • 2LI Yong-xiang. Positive solution for fourth-order periodic boundary value problems [J]. Nonl Anal, 2003, 54(6): 1069.
  • 3CONG Fu-zhong. Existence of periodic solution of (2n q- 1) th-order ordinary differential equation[J]. ApplMath, 2004, 17(6): 727.
  • 4LI Yong-xiang, YANG He. Existence and uniqueness of periodic solution for odd-order ordinary differential equations [J]. Ann Polon Math, 2011, 2(100): 105.
  • 5CONG Fu-zhong, HUANG Qing-dao, SHI Shao- yun. Existence and uniqueness of periodic solution for (2n + 1)th-order differential equations[J]. J Math AnalAppl, 2000, 241(1): 1.
  • 6CABADA A. The method of lower and upper solutions for nth-order periodic boundary value problems[J]. J Appl Math Stoch Anal, 1994, 7: 33.
  • 7LI Yong-xiang. Existence and uniqueness for higher order periodic boundary value problem under spectral seperation conditions[J]. J Math Anal Appl, 2006, 322(2): 530.
  • 8LI Yong-xiang, MU Jia. Odd periodic solutions for 2nth-order ordinary differential equations[J]. Non Anal Attl. 2010, 73(10): 3268.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部