摘要
探讨闭区间上非负连续函数列{g(x)fn(x)}积分中值点xn所产生的数列{f(xn)}的单调性,以及序列{fn(xn)}的收敛性,从而将与积分∫bag(x)fn(x)dx有关的积分极限问题转化为数列极限来解决.
This paper discusses the monotonicity of the sequence{f(xn)}generated by the integral mean value point of nonnegative continuous function sequence {g(x)fn(x)}on a closed interval,and then studies the convergence of the sequence {fn(xn)}.Furthermore,the integral limits about integral ∫bag(x)fn(x)dx are translated into sequence limits to solve it.
出处
《西北师范大学学报(自然科学版)》
CAS
北大核心
2015年第6期14-16,34,共4页
Journal of Northwest Normal University(Natural Science)
基金
国家自然科学基金资助项目(11461019)
甘肃省高等学校科研项目(2014A-109)
关键词
函数列
积分中值定理
积分中值点
单调性
积分极限
function sequence
integral mean value theorem
integral mean value point
monotonicity
integral limit