期刊文献+

基于逆向游走的PageRank社交网络影响力度量算法 被引量:4

A social networks influence measurement algorithm based on reverse walk PageRank
下载PDF
导出
摘要 随着社交网络的发展,其节点影响力度量成为一个重要的研究领域。针对传统随机游走PageRank算法精确度不高的问题,提出一种逆向随机游走PageRank算法,该算法采用逆向查找消息传播源的思想,对网络中的每条有向边以概率ε进行逆向随机游走,通过迭代计算出每个节点的PageRank值。实验表明,本文提出的算法较传统的随机游走PageRank算法具有更好的稳定性,并在迭代次数较少时也能保持较高精度。 With the development of social networks, the influence measurement of nodes has become an important research area. Aiming at the accuracy problem of the traditional random walk PageRank al- gorithm, we in this paper propose a reverse random walk PageRank algorithm, which is based on the idea of reversely searching dissemination source, each directed edge starts the random walk with probability ,and the value of PageRank is calculated by iteration. Experimental evaluation on publicly availa- ble datasets demonstrates that our algorithm has the improved stability and higher accuracy when there is less iteration.
出处 《计算机工程与科学》 CSCD 北大核心 2015年第11期2134-2141,共8页 Computer Engineering & Science
基金 国家自然科学基金资助项目(61370050 61572036) 安徽高校自然科学研究资助项目(KJ2015A067 KJ2014A088) 芜湖市科技计划重点资助项目(2015cxy10) 安徽师范大学校创新基金资助项目(2015cxjj10)
关键词 PAGERANK 随机游走 社交网络 影响力度量 PageRank random walk social networks influence measurement
  • 相关文献

参考文献7

二级参考文献132

  • 1Kernpe D, Kleinberg J, Tardos E. Maximizing the spread of influence in a social network [C] //Proe of the 9th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York, ACM, 2003:137-146.
  • 2Chen Wei, Wang Yajun, Yang Siyu. Efficient influence maximization in social networks [C] //Proc of the 15th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2009:199-208.
  • 3Young H P, Blume L, Durlauf S. The diffusion of innovations in social networks [M]. The Economy as a Complex System Ⅲ. New York: Oxford University Press, 2003:1-19.
  • 4Watts D J. A simple model of global cascades con random networks[J]. National Academy of Sciences, 2002: 99(9): 5766-5571.
  • 5Goldenberg J, Libai B, Muller E. Talk of the network: A complex systems look al the underlying process of word-of mouth [J]. Marketing Letters, 2001, 12(3): 211-223.
  • 6Michael M, Francesco 15, Carlos C. Sparsification of Influencc Networks [C] //Proc of the 171h ACM SIGKDD In: Conf on Knowledge D{scovery and Data Mining. New York: ACM, 2011, 529- 537.
  • 7Manuel G, Jure i., Andreas K. Inferring networks of diffusion and influence[C]//Proc of the 16th ACM SIGKI)D lnt Conf on Knowledge Discovery and Data Mining. New: York: ACM, 2010:1019-1028.
  • 8ROGERS E. Diffusion of Innovations[M]. New York: The Free Press, 1962.
  • 9WENG J, LIM E, JIANG J, et at. TwitterRank: Finding Topic-Sensitive Influential Twitterers [C]// Proceedings of the 3th ACM International Conference on Web Search and Data Mining, February 3-6, 2010, New York City, NY, USA, 2010: 261-270.
  • 10PAL A, COUNTS S. Identifying Topical Authorities in Microblogs[C]// Proceedings of the 4th ACM International Conference on Web Search and Data Mining, February 9-12, 2011, Hong Kong, 2011: 45-54.

共引文献229

同被引文献24

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部