期刊文献+

有氧运动增加APP+PS1转基因小鼠皮层突触数目、降低Aβ和cofilin异常聚集 被引量:7

Aerobic Exercise Increases Synaptic Loss,Attenuates Aggregation of Aβand Cofilin in the Cortex of APP / PS1 Transgenic Mice
原文传递
导出
摘要 目的:探讨有氧运动对6月龄APP+PS1双转基因小鼠皮层Aβ沉积及突触cofilin异常聚集的影响。方法:清洁级APP+PS1小鼠随机分为安静组(AS)、运动组(AE),同月龄C57BL/6J小鼠为正常对照组(CS)。AE组进行8周跑台运动,5 d/周,60 min/d。前10 min运动速度15 m/min,后50 min运动速度18 m/min,跑台坡度为0°。跳台回避实验和旋转杆平衡实验检测行为学变化,记录小鼠错误反应次数、达标率及不同转速下运动时间。免疫组化和免疫荧光方法检测额叶和颞叶Aβ、突触素(Synapsin,Syn)表达。Western blot检测额叶和颞叶cofilin、Syn的表达。透射电镜观察cofilin-rod结构。结果:1)行为学:6月龄APP+PS1小鼠较CS组错误次数显著升高(P<0.05),达标率降低(P<0.05),相同转速下运动时间显著减少(P<0.01);8周有氧运动显著降低其错误次数(P<0.05),使达标率有所增加,并使平衡能力得到改善。2)6月龄APP+PS1小鼠额叶和颞叶均出现Aβ沉积、cofilin的异常聚集(以额叶更明显),同时Syn表达较CS组显著减少(额叶减少更显著,P<0.01)。电镜下额叶、颞叶轴突均出现微丝微管排列紊乱,有聚集形成棒状结构的倾向,可见早期空泡变性。3)有氧运动明显减少6月龄APP+PS1小鼠皮层Aβ的沉积、使额叶异常聚集的cofilin显著减少(P<0.01),同时增加了突触前Syn含量。电镜下可见轴浆内微丝微管排列整齐,结构趋于正常。结论:有氧运动抑制6月龄APP+PS1转基因小鼠皮层Aβ沉积,减少cofilin的异常聚集,从而增加突触前Syn含量,是其提高行为学能力的机制之一。 Objective: This study aimed to investigate the effect of aerobic exercise on the extent of amyloid (Aβ) deposits and cofilin aggregation in the cortex of APP/PS1 transgenic mice. Methods: APP/PS1 transgenie mice (4 months old) were randomly divided into 8 weeks exercise group (AE) and sedentary group (Aβ) respectively, and C57BL/6J mice (4 months old) were taken as the control group (CS). The AE group' mice were underwent treadmill at 15m/rain (the first 10 min) or 18rn/min (the following 50 rain) for 60 rain, 0- slope, 5 d/week, for 8 weeks. After exercise, the behavioral change was detected by step-down fear conditioning and rotarod test, and the wrong response number, pass rate and exercise time at different rotated speed were recorded. The expressions of Aβ, synapsin (Syn) in frontal and temporal lobe were tested by Immunofluorescenee and Immunohistochemis- try, the expressions of eofilin and Syn in frontal and temporal lobe were detected by Western blotting, and the cofi- lin-rod structure was observed by transmission electron microscopy (SEM). Results : 1 ) Behaviorally, compared with CS group, mice of AS group had more wrong movements, lower pass rate, and less exercise time at the same rotated speed ( Ps 〈 0.05) , but mice of AE group had less wrong movements, higher pass rate and better balance ability (Ps 〈 0.05). 2) There was aggregation of Aβ and cofilin in frontal and temporal lobe in AS group mice, and the Syn expression in AS group was higher than that in CS group ( P 〈 0.05 ) , especially in frontal lobe. ASgroup mice's microtubules and microfilaments of axon were disordered, they were going to be aggregated, and vac- uolar degeneration was observed. 3 ) AE group mice had less aggregation of Aβ, less abnormal aggregation of cofi- lin (P 〈0.01 ) , higher Syn level. Their microtubules and microfilaments were ordered and had normal structure. Conclusion: Aerobic exercise may reduce the extent of A- deposition in cortex and inhibit cofilin aggregation and synaptic loss in APP/PS1 transgenic mice, which is one mechanism for exercise improving the ability of behavior.
出处 《北京体育大学学报》 CSSCI 北大核心 2015年第10期77-82,共6页 Journal of Beijing Sport University
基金 国家自然科学基金资助项目(编号:31271278) 国家科技支撑计划课题资助项目(编号:2012BAK21B01)
关键词 有氧运动 突触素 COFILIN Β-淀粉样蛋白 aerobic exercise synapsin cofilin Aβ-amyloid
  • 相关文献

参考文献21

  • 1Patel T. Environmental enrichment: aging and memory[J]. Yale J Bio and Med, 2012,85(4) :491 -500.
  • 2Overk CR, Masliah E. Pathogenesis of synaptic degenera-tion in Alzheimer’s diease and Lewy body disease [ J ]. Bio-chem Pharmacol,2014 ,88(4) :508 -516.
  • 3Perrin RJ, Fagan AM, Holtzman DM. Multimodal tech-niques for diagnosis and prognosis of Alzheimer’s disease[J]. Nature, 2009, 461(7266) :916 -922.
  • 4Cichon J, Sun CC, ChenB,et al. Cofilin aggregationblocks intracellular trafficking and induces Synaptic loss inhippocampal neurons [ J ]. J Bio Chemistry, 2012, 287(6): 3919 -3929.
  • 5Bamburg JR,Bernstein BW,Davis RC,et al. ADF/Cofi-lin-actin rods in neurodegenerative diseases [ J ]. CurrAlzheimer Res,2010,7(3) :241 -250.
  • 6赵丽,李岩,顾博雅.有氧运动调节Rho/cofilin信号改善衰老大鼠皮层突触丢失[J].北京体育大学学报,2013,36(11):61-65. 被引量:8
  • 7Stessman J, Hammerman-Rozenberg R, Cohen A, et al.Physical activity, function, and longevity among the veryold[J]. Arch Intern Med, 2009,169(16) :1476 -1483.
  • 8赵丽,李岩,龚丽景,吕媛媛.8w有氧运动调控成年大鼠皮层Rho GTPases活性[J].中国老年学杂志,2013,33(21):5357-5360. 被引量:4
  • 9顾博雅,卢金地,吕媛媛,赵丽.中等强度运动调节APP/PS1转基因小鼠脑皮层AMPA受体GluR1活性[J].北京体育大学学报,2014,37(9):56-60. 被引量:5
  • 10Bero AW, Yan P, Roh JH, et al. Neuronal activity regu-lates the regional vulnerability to amyloid-beta deposition[J]. Nat Neurosci, 2011, 14(6) : 750-756.

二级参考文献45

  • 1Burridge K, Wennerberg K. Rho and Rac take center stage(J) . Cell, 2004; 116: 167 -79.
  • 2Sit ST, Manser E. Rho GTPases and their role in organizing the actin cy?toskeleton[J]. J Cell Sci,2011 ;124:679-83.
  • 3Selkoe DJ. Alzheimer's disease is a synaptic failure(J) . Science, 2002 ; 298: 789-91.
  • 4Lustig C, Shan P, Seidler R, et al. Aging, training, and the brain: a review and future directions[J]. Neuropsychol Rev ,2009; 19(4) :504-22.
  • 5Heasman 5J, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies(J) . Nat Rev Mol Cell Bioi, 2008; 9: 690- 701.
  • 6Hall A, Nobes CD. Rho GTPases: molecular switches that control the or?ganization and dynamics of the actin cytoskeleton(J). Philos Trans R Soc Lond B Bioi Sci ,2000 ;355(1399) :965-70.
  • 7Luo L Rho GTPases in neuronal morphogenesis(J). Nat Rev Neurosci, 2000 ; 1 : 173 -80.
  • 8Stessman J, Hammerman-Rozenberg R, Cohen A, et al. Physical activity, function, and longevity among the very old(J) . Arch Intern Med, 2009 ; 169(16) : 1476-83.
  • 9Nithianantharajah J, Hannan AJ. The neurobiology of brain and cognitive reserve: mental and physical activity-as modulatees-of brain disorders[J]. Prog Neurobiol ,2009 ;89(4) :369-82.
  • 10Maria Sasvari , Taylor A W , Gaal D, et al. The effect of regular exercise on development of sarcoma tumor and oxidative damage in mice liver[J]. Journal of Sport Science and Medioine, 20 11 ;(10) : 93-6.

共引文献13

同被引文献23

  • 1Cai Q, Davis ML, Sheng ZH. Regulation of axon mito- chondrial transport and its impact on synaptic transmission [J]. Neurosci Res, 2011,70(1):9-15.
  • 2Cavallucci V, Ferraina C, D'Amelio M. Key role of mito- chondria in Alzheimer' s disease synaptic dysfunction[J]. Curr Pharm Des, 2013,19 (36) : 6440 - 6450.
  • 3Kanaan NM, Pigino GF, Brady ST, et al. Axon degenera- tion in Alzheimer' s disease: when signaling abnormalities meet the axonal transport system [J]. Exp Neurol, 2013, 246:44 - 53.
  • 4Millecamps S, Julien JP. Axonal transport deficits and neurodegenerative disease [J]. Nat Rev Neurosci, 2013,14 (3) :161 -176.
  • 5Souza LC, Filho CB, Goes AT, et al. Neuroprotective effect of physical exercise in a mouse model of Alzheimer's disease induced by beta-amyloid ( 1-40 ) peptide [J]. Neurotox Res,2013,24(2) : 148 - 163.
  • 6Cho J, Shin MK, Kim D, et al. Treadmill running rever- ses cognitive declines due to Alzheimer's disease[J]. Med Sci Sports Exerc, 2015,47(9) :1814 - 1824.
  • 7De Vos K J, Grierson AJ, Ackerley S, et al. Role of ax- onal transport in neurodegenerative diseases [J]. Annu Rev Neurosci, 2008, 31 (S2) : 151 - 173.
  • 8Maday S, Twelvetrees AE, Moughamian AJ, et al. Axonal transport: cargo-specific mechanisms of motility and regulation[J]. Neuron, 2014, 84 (2) :292 - 309.
  • 9Li Z, Okamoto KI, Hayashi Y, et al. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses [J]. Cell, 2004, 119 (6) : 873-887.
  • 10Kang JS, Tian JH, Pan PY, et al. Docking of axonal mi- tochondria by syntaphilincontrols their mobility and affects short-term facilitation [J]. Cell, 2008, 132 ( 1 ) : 137 - 148.

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部