期刊文献+

一类非自治共振二阶系统的多重周期解

Multiplicity of Periodic Solution of a Class of Non-Automous Second Order System at Resonance
下载PDF
导出
摘要 研究了非自治共振二阶系统周期解的存在性问题.在非线性项次线性增长时,将这类系统的周期解转化为定义在一个适当空间上泛函的临界点,然后利用临界点理论建立了此类系统周期解的存在性结果. The existence of periodic solutions for non-automous second order systems at resonance is investigated. With the sub-linear increase of the non-linear term, the periodic solutions of the system are converted into the critical points of a functional defined on a proper space, and the existence of periodic solutions is proved through the critical point theory.
作者 张环环
出处 《吉首大学学报(自然科学版)》 CAS 2015年第5期16-20,共5页 Journal of Jishou University(Natural Sciences Edition)
基金 数学天元基金资助项目(11326100) 中央高校基本科研业务费专项资助项目(31920130010)
关键词 非自治二阶系统 临界点理论 周期解 共振 临界点 non-autonomous second order systems critical point theory periodic solutions resonance critical point
  • 相关文献

参考文献13

  • 1OU Zengqi’TANG Chunlei. Periodic and Subharmonic Solutions for a Class of Superquadratic Hamiltonian Systems[J].Nonlinear Analysis TMA, 2004,58(3) :245 - 258.
  • 2TANG Chunlei. A Note on Periodic Solutions of Second Order Systems[J]. Proc. Amer. Math. Soc. ,2003,132 :1 295 -1393.
  • 3ZHANG Xingyong, TANG Xianhua. Periodic Solutions for an Ordinary ^-Laplacian System [J], Taiwan Residents Journal ofMathematics,2011,15(3):1 369 - 1 396.
  • 4JEAN MAWHIN. Critical Point Theory and Hamiltonian Systems[M]. New York:Springer Verlag,1989.
  • 5ZHAO Fukun,WU Xian. Existence of Periodic Solutions for Nonautonmous Second Order Systemswith Linear Nonlin-earity[J], Nonlinear Anal. ,2005,60(7) :325 - 335.
  • 6TANG Chunlei. Periodic Solutions for Second Order Systems with Sublinear Nonlinearity[J]. Proceedings of the Ameri-can Mathematical Society, 1998?126 : 3 263 - 3 270.
  • 7韩志清.共振条件下的常微分方程组2π-周期解的存在性[J].数学学报(中文版),2000,43(4):639-644. 被引量:10
  • 8HAN Zhiqing. Existence of Periodic Solutions of Linear Hamiltonian Systems with Sublinear Perturbation[J], BoundaryValue Problems,2010,12:123 - 131.
  • 9张申贵.非自治共振二阶离散Hamilton系统的周期解[J].贵州师范大学学报(自然科学版),2013,31(1):48-52. 被引量:1
  • 10孟海霞,郭晓峰.一类共振二阶系统的多重周期解[J].华东师范大学学报(自然科学版),2006(1):40-44. 被引量:1

二级参考文献25

  • 1唐春雷.AN EXISTENCE THEOREM OF SOLUTIONS FOR SEMILINEAR ELLIPTIC EQUATIONS ON R^N[J].Acta Mathematica Scientia,1999,19(3):289-292. 被引量:3
  • 2TANG Chunlei.Periodic Solutions for Second Order Systems with Sublinear Nonlinearity[J].Proc Amer Math Soc,1998(126):3263-3270.
  • 3MAWHIN J,WILLEM M.Critical Point Theory and Hamiltonian Systems[M].New York:Springer-verlag,1989.
  • 4AN Shiquan,AN Yukun.Periodic Solution of a Class of Second Order Systems at Resonance[J].四川大学学报:自然科学版,2002(3):493-496.
  • 5ZHAO Fukun.Existence of Periodic Solutions for Nonautonmous Second Order Systems with Linear Nonlinearity[J].NonlinearAnal,2005,60(7):325-335.
  • 6Rabinowitz P H. Periodic solutions of hamiltonian systems [J]. Comm Pure Math,1978, 31: 157-184.
  • 7Hong You-cheng, Yin Qun. Periodic solution of a class of second order Hamiltonian systems[J]. Mathematical Research Exposition, 1996, 16(1): 13-19.
  • 8Mawhin J, Willem M. Critical Point Theory and Hamiltonian [M].New York: Springer-Verlag, 1989.
  • 9Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations [M].Providence, RI: Amer Math Soc, 1986. 53-60.
  • 10Tang Chun-Lei. Periodic solutions for nonautonomous second order systems with sublinear nonlinearity [J].Amer Math Soc, 1998, 126(11): 3263-3270.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部