期刊文献+

电力工程造价的随机权深度神经学习估算方法 被引量:7

Random weighted deep neural learning based cost estimation of power engineering project
下载PDF
导出
摘要 为了实现对电力工程造价高效、精确的估算,提出了一种电力工程造价的随机权深度神经学习估算算法(Random Weighted Deep Neural Learning,RWDNL)。通过构建外权随机的带有小中间层的多隐层神经网络模型,利用神经网络深度学习实现了对海量数据有效特征的提取以及电力工程项目造价估算。数值仿真实验结果表明该方法使工程造价估算精度和速度大大提高,可获得令人满意的泛化能力。 In order to realize an efficient and accurate cost estimation of power engineering project, a cost estimation method for power engineering project with big data is proposed based on a so-called Random Weighted Deep Neural Learning(RWDNL)algorithm. By means of building a multi-layer random weighted neural network with a small central layer, effective features are extracted from mass engineering data and power engineering project cost estimation is also real-ized by neural network deep learning. The experimental results demonstrate the outstanding performances of the proposed RWDNL method on estimation time consume and estimation accuracy, as well as its satisfactory generalization ability.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第21期213-218,共6页 Computer Engineering and Applications
基金 中央高校基本科研业务费专项资金资助
关键词 造价估算 大数据 神经网络 深度学习 电力工程 cost estimation big data neural network deep learning power engineering
  • 相关文献

参考文献21

二级参考文献203

共引文献783

同被引文献57

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部