期刊文献+

高超声速飞行器操纵性/控制律一体化设计方法 被引量:3

Integrated design method for manipulability and control law of hypersonic vehicle
下载PDF
导出
摘要 高超声速飞行器主要飞行阶段包括助推分离段、巡航段和下降段,在分离段操纵面的任务是快速抑制分离扰动,而巡航段主要用于高精度姿态控制。针对分离段和巡航段对舵面操纵性要求差别较大的特点,本文探讨从满足控制要求的角度对操纵面尺寸进行优化设计的方法,即操纵性/控制律一体化设计。采用最优控制方法对飞行器自动驾驶仪增益进行优化,并基于多目标遗传算法的并行子空间优化方法,得到了高超声速飞行器最优舵面外形尺寸和相应的控制律。仿真结果表明,最优舵面在分离段能够快速抑制分离扰动对飞行器姿态的影响,并将飞行器姿态迅速调整到发动机点火窗口;在巡航段能够快速抑制阵风干扰对飞行器姿态的影响,稳定飞行器姿态,为高超声速飞行器操纵性设计提供了依据。 The main flight phases of a hypersonic vehicle include propulsion-assisted separation phase,cruise phase and descent phase. In the separation phase,the task of control surface is to suppress the separation perturbation of the hypersonic vehicle quickly,but in the cruise phase,the task is to achieve the high-precision control of its attitude. During these two phases,the requirements for the manipulability of the rudder surface are rather different. To satisfy the control requirements,this paper explores the control surface dimension optimization and design method,namely the manipulability and control law integrated design method. It uses the optimal control method to optimize the gains of the autopilot of the hypersonic vehicle and then optimizes the boundary dimensions of its optimal rudder surface and its control law with the parallel subspace optimization method of the multi-objective genetic algorithm.The simulation results show that,during the separation phase,he optimal rudder surface can quickly suppress the influence of separation perturbation on the attitude of the hypersonic vehicle and quickly adjust its attitude to the engine ignition window and that,during the cruise phase,the optimal rudder surface can quickly suppress the influence of gust interference on the attitude and thus stabilize it. This exploration sheds light on a hypersonic vehicle's manipulability design.
出处 《固体火箭技术》 EI CAS CSCD 北大核心 2015年第5期601-607,652,共8页 Journal of Solid Rocket Technology
基金 国家自然基金(91216104)
关键词 高超声速飞行器 操纵性 控制律 一体化设计 hypersonic vehicle manipulability control law integrated design
  • 相关文献

参考文献12

  • 1Jaroslaw Sobieszczanski-Sobieski. Multidisciplinary aerospace design optimization: survey of recent developments [ C ]// 34th Aerospace Sciences Meeting and Exhibit, January 1996.
  • 2Kevin M Ryan,Mark J Lewis.Comparison of robust optimiza- tion methods applied to hypersonic vehicle design [ C ]// Guidance, Navigation, and Control and Co-located Confer- ences, 19-22 August 2013, Boston, MA, AIAA 2013-4680.
  • 3张勇,陆宇平,刘燕斌,南英,徐志晖.高超声速飞行器控制一体化设计[J].航空动力学报,2012,27(12):2724-2732. 被引量:9
  • 4张登峰,高金源.基于MDO技术的飞机操纵面参数/飞行控制律多目标优化设计[J].航空学报,2008,29(6):1626-1633. 被引量:1
  • 5Sadraey M, Colgren R.A systems engineering approach to the design of control surfaces for UAVs [ C ]//45th AIAA Aero- space Sciences Meeting and Exhibit, 8-11 January 2007, Re- no, Nevada, AIAA 2007-660.
  • 6Ruben E Perez, Hugh H T Liu. Flight dynamics and control muhidisciplinary integration in aircraft conceptual design op- timization[ C]//10th AIAA/ISSMO Muhidisciplinary Analy- sis and Optimization Conference, 30 Augnst-1 September 2004, Albany, New York, AIAA 2004-4435.
  • 7Catherine Bahm, Ethan Baumann, John Martin. The X-43A Hyper-X Maeh 7 flight 2 guidance, navigation, and control o- verview and flight test results[ R] .AIAA 2005-3275.
  • 8Davidson J, Lallman F, McMinn J D. Flight control laws for NASA's Hyper-X research vehicle[ R] .AIAA-99-4124.
  • 9Huang C H,Galuski J.Multi-objective pareto concurrent sub- space optimization for multidisciplinary design [ J ]. AIAA Journal, 2007,45 ( 8 ).
  • 10Curtis P Mracek, Brett Ridgely D. Missile longitudinal auto- pilots:connections between optimal control and classical to- pologies [ C ]//AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA 2005-6381.

二级参考文献22

  • 1吴志刚,杨超.机翼的气动伺服弹性设计优化研究[J].航空学报,2006,27(4):570-573. 被引量:6
  • 2Ruben E P, Hugn H W L. Flight dynamics and control multidisciplinary integration in aircraft conceptual design optimization[R]. AIAA -2004-4435, 2004.
  • 3Kajiwara I. Simultaneous optimum designof shape and control system for micro air vehicles[R]. AIAA-99 -1391, 1999.
  • 4Apkarian P, Gahinet P, Becker G. Self scheduled H∞ control of linear parameter varying systems: a design example [J]. Automatica, 1995, 31(9): 1251-1261.
  • 5Yukish M, Bennett L, Simpson T W. Requirements on MDO imposed by the undersea vehicle conceptual design problem[R]. AIAA-2000-4816, 2000.
  • 6Brown N F. Evaluation of multidisciplinary optimization (MDO) techniques applied to a reusable launch vehicle[R]. AIAA-2005-707, 2005.
  • 7Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength pareto evolutionary algorithm for multi-objective optimization[C] // Proceedings of the evolutionary methods for design, optimization and control. 2002: 1-6.
  • 8王勇.调参控制器设计方法在直升机控制律设计中的应用[D].北京:北京航空航天大学自动控制系,2001
  • 9Fiorentini L,Serrani A,Bolender M A. Nonlinear robust adaptive control of flexible air breathing hypersonic vehicles[J].Journal of Guidance,Control & Dynamics,2009,(02):402-417.
  • 10Kelkar A G,Vogel J M,Whitmer C E. Design tool for control-centric modeling,analysis,and trade studies for hypersonic vehicles[AIAA-2011-2225][R].2011.

共引文献8

同被引文献19

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部