期刊文献+

纤维增强复合材料静动态拉伸形变的碳纳米纸传感器监测 被引量:4

Deformation monitoring of the fiber reinforced composite in static and dynamic tension with buckypaper sensor
下载PDF
导出
摘要 碳纳米纸可用作应变传感器监测纤维增强复合材料在静动态拉伸状况下的变形问题,这主要是通过测量与玻璃纤维增强复合材料一体固化成型的碳纳米纸传感器电阻变化来实现。试验结果表明,静态拉伸试验中,碳纳米纸传感器具有非常灵敏的应变传感性,在0~11 021με的应变范围内,其应变传感系数可达到22.1,在弹性极限点位置(应力为210MPa)电阻变化率发生突变;拉-拉疲劳试验中,当最大拉伸应力(215 MPa)大于弹性极限时,残余电阻变化率随疲劳周期增加明显加快;碳纳米纸传感器具有非常好的应变监测同步性和稳定性,完全可满足复合材料结构健康监测需要。 Buckypaper is usually used as a strain sensor to monitor the damage of fiber reinforced composites subjected to tensile and cyclic fatigue loadings. This result is achieved by measuring the electrical resistance change in the buckypaper sensor cocured with the composites. The test results show that the buckypaper sensor has a very high strain sensitivity in static tensile test and the strain sensing factor can reach 22. 1 in the strain range 0 ~ 11 021 με,The rate of change in resistance increases significantly at the elastic limit point( corresponding to the stress of 210 MPa); the change of residual resistance increases significantly with the fatigue cycles when the maximum fatigue stress( 215 MPa) is greater than the elastic limit point in the tension-tension fatigue test. Buckypaper sensor has a very good stability and synchronization for strain monitoring and can meet the needs for health monitoring of composite structures.
出处 《固体火箭技术》 EI CAS CSCD 北大核心 2015年第5期746-750,共5页 Journal of Solid Rocket Technology
基金 国防基础科研项目(A35201106) 工信部民机专项 航空科学基金(2013ZA54002)
关键词 碳纳米纸传感器 纤维增强复合材料 电阻 变形 监测 buckypaper sensor fiber reinforced composites electrical resistance deformation monitoring
  • 相关文献

参考文献17

  • 1Ajayan P M, Tour J M. Materials science-Nanotube compos- ites [ J ]. Nature, 2007,447 ( 7148) : 1066-1068.
  • 2Mintmire J W,White C T.Electronic and structural-properties of carbon nanotubes [ J ].Carbon, 1995,33 (7) : 893-902.
  • 3Wildoer J W G, Venema L C, Rinzler A G, et al. Electronic structure of atomically resolved carbon nanotubes [ J ]. Na- ture, 1998,391 : 59-62.
  • 4Nofar M, Hoa S V, Pugh M D.Failure detection and monito- J ring in polymer matrix composites subjected to static and dy- namic loads using carbon nanotube networks [ J ]. Composites Science and Technology, 2009,69 : 1599-1606.
  • 5CKarimov K S, Khalid F A, Chani M T S. Carbon nanotubes based strain sensors[ J] .Measurement 2012,45:918-921.
  • 6Alamusi H N, Fukunaga H, Atobe S, et al. Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites [ J ]. Sensors, 2011,11 : 10691-10723.
  • 7Kim D H,Ahn J H,Choi W M,et al.Stretchable and foldable silicon integrated circuits [ J ].Science, 2008,320: 507-511.
  • 8Fan Q Q,Qin Z Y,Gao S L,et al.The use of a carbon nano-tube layer on a polyurethane multifilament substrate for moni- toring strains as large as 400% [ J ]. Carbon, 2012,50 : 4085- 4092.
  • 9Pham G T, Park Y, Liang Z, et al.Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing[ J ].Composites B, 2008,39 : 209-216.
  • 10Kang I, Schulz M J, Kim J H, et al.A carbon nanotube strain sensor for structural health monitoring [ J ]. Smart Material and Structure, 2006,15 : 737-748.

同被引文献14

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部