期刊文献+

新型人工神经网络在风速预测中的研究

Application of the New Type of Artificial Neural Networks in Wind Speed Prediction
下载PDF
导出
摘要 提供准确的风速估计模型对电网的安全性、环境影响和经济效益起到非常重要的作用。针对风速预测提出了一种基于人工神经网络(ANN)智能数据处理系统的综合方案,该方案采用广义回归神经网络(GRNN)和Elman神经网络(ENN)形成的混合模型实现了数据去噪,并应用预处理的样本来预测风速。通过观测4个点月平均风速数据来测试模型并进行分析,表明用该方法提供月平均风速的估计是比较准确的。 It plays a very important impact for the grid on safety, environmental and economic that provides accurate velocity estimation model.This paper presents a comprehensive program to predict the wind speed based on the artificial neural network (ANN) intelligent data processing system.The method uses the hybrid model of generalized regression neural network (GRNN) and Elman neural network (ENN),which data de-noising and pretreatment sample to predict wind speed are achieved simply. Through four observation points to the monthly average wind speed data and conduct research to test the model, it provides monthly average wind speed is estimated to be very accurate.
机构地区 青岛黄海学院
出处 《科技通报》 北大核心 2015年第11期186-189,共4页 Bulletin of Science and Technology
基金 山东省高等学校科技计划项目(项目编号:J12LN84 J12LN85)
关键词 智能系统 风速预测 人工神经网络 广义回归神经网络 ELMAN神经网络 intelligent systems wind forecasting ANN GRNN ENN
  • 相关文献

参考文献10

  • 1Akp-nar,Adem. Evaluation of wind energy potentiality atcoastal locations along the north eastern coasts of Turkey.Energy,2013,50: 395-405.
  • 2李洪涛.人工神经网络和模糊技术在风能预测中的应用[J].中国电力,2012,45(8):69-73. 被引量:10
  • 3Fadare,D. A. The application of artificial neural networksto mapping of wind speed profile for energy application inNigeria.Applied Energy,2010,87(3):934-942.
  • 4廖辉英,郑世才,全成文.基于人工神经网络和粒子群算法的风能预测模型[J].微计算机信息,2012,28(10):148-149. 被引量:3
  • 5Theodosiou,Marina. Disaggregation & aggregation of timeseries components: A hybrid forecasting approach usinggeneralized regression neural networks and the theta meth-od.Neurocomputing,2011,74(6): 896-905.
  • 6郭泰圣,张新长,梁志宇.神经网络决策树的矢量数据变化信息快速识别方法[J].测绘学报,2013,42(6):937-944. 被引量:15
  • 7Zhou C,L Y Ding,R He.PSO-based Elman neural net-work model for predictive control of air chamber pressurein slurry shield tunneling under Yangtze River.Automa-tion in Construction,2013,36: 208-217.
  • 8Zhao,Jun,et al.Extended Kalman filter-based Elman net-works for industrial time series prediction with GPU accel-eration.Neurocomputing,2013,118: 215-224.
  • 9Li Penghua,et al. Application of a hybrid quantized Elmanneural network in short-term load forecasting.InternationalJournal of Electrical Power & Energy Systems,2014,55:749-759.
  • 10Kelo,Sanjay,Sanjay Dudul.A wavelet Elman neural net-work for short-term electrical load prediction under theinfluence of temperature.International Journal of Electri-cal Power & Energy Systems,2012,43(1):1063-1071.

二级参考文献29

  • 1童小华,邓愫愫,史文中.基于概率的地图实体匹配方法[J].测绘学报,2007,36(2):210-217. 被引量:78
  • 2KangJinsong, Zhang Zhiwen, Lang Yongqiang. Developmentand trend of wind power in China 2007 IEEE Canada ElectricalPower Conference [C].EPC 2007 2007: 330-335.
  • 3可再生能源中长期发展规划[D].2007中华人民共和国国务院.
  • 4NegnevitskyM, Potter C W. Innovative Short -Term WindGeneration Prediction Techniques [C].Power Systems Conferenceand Exposition. 2006: 60-65.
  • 5TaniquchiKenqo, Ichiyanaqi Katsuhiro, Yukita Kazuto, GotoYasuyuki. Study on forecast of time series of wind velocity for windpower generation by using wide meteorological data [J].IEEJTransactions on Power and Energy. 2008 128-2: 416-422.
  • 6J.L. Torres, A. Garcia,M. De Bias,A. De Francisco. Forecast ofhourly average wind speed with ARMA models in Navarre (Spain)[J].Solar Energy. 2005 79-1: 65-77.
  • 7P.Louka, G. Galanis, N. Siebert, G. Kariniotakis, P. Katsafados,I. Pytharoulis and G. Kallos. Improvements in wind speed forecastsfor wind power prediction purposes using Kalman filtering [J].Journal of Wind Engineering and Industrial Aerodynamics, 200896-12: 2348-2362.
  • 8Fonseca,Inacio, Farinha, Torres, Barbosa, Fernando Maciel.On -condition maintenance of wind generators -From predictionalgorithms to hardware for data acquisition and transmission [J].WSEAS Transactions on Circuits and Systems. 2008 7-9: 909-918.
  • 9CarolinMabel, M Fernandez E. Analysis of wind powergeneration and prediction using ANN: A case study [J].RenewableEnergy. 2008 33-5: 986-992.
  • 10CM Bishop. Neural Networks for Pattern Recognition [D].Oxford University Press. 1995.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部