期刊文献+

基于时间和成本的自适应云计算调度算法

Self-adaptive Cloud Computing Scheduling Algorithm Based on Time and Cost
下载PDF
导出
摘要 资源使用一直都是研究的重点,由于云计算中需要处理的任务量与数据量都十分巨大,为了能够更好地合理分配云计算资源,有效地调度任务执行,使得用户能够在短时间和低成本中完成目标,本文提出了一种基于时间和成本的遗传算法,通过对任务完成的总时间、总成本以及任务平均时间和任务平均成本四个主要因素进行分析,构建了相应的适应度函数,改进后的算法能够有效的解决云计算的时间和成本的因素,仿真实验中通过与近年来几个较新的其他改进云计算算法相比,本文算法具有更高的调度效率。 The use of resources has always been a focus in research. As there are large quantities of tasks and data to be processed, in order to better and reasonably allocate cloud computing resources, effectively schedule and execute tasks, and enable users to achieve their goals in a short time and at low cost, a time and cost genetic algorithm is presented in his paper. Through analyzing the four main factors including total time and cost and the average time and cost spent in finishing tasks, a corresponding fitness function is built, which allows the improved algorithm to effectively solve the time and cost factors of cloud computing. In the simulation experiment, through comparison with several other relatively new Cloud algorithms in recent years, this algorithm has higher scheduling efficiency.
作者 史振华
出处 《科技通报》 北大核心 2015年第11期220-224,共5页 Bulletin of Science and Technology
基金 绍兴市科技局项目(2013B70022) 浙江省教育科学规划研究课题(2014SCG190)
关键词 遗传算法 时间 成本 适应度 genetic algorithm time cost fitness
  • 相关文献

参考文献10

二级参考文献95

  • 1孙瑞锋,赵政文.基于云计算的资源调度策略[J].航空计算技术,2010,40(3):103-105. 被引量:43
  • 2孙雪冬,徐晓飞,王刚.基于有向超图的工作流资源分配均衡优化方法[J].电子学报,2005,33(8):1370-1374. 被引量:12
  • 3李士勇,李盼池.基于实数编码和目标函数梯度的量子遗传算法[J].哈尔滨工业大学学报,2006,38(8):1216-1218. 被引量:60
  • 4唐磊,廖渊,李明树,淮晓永.面向普适计算的服务构件动态部署问题及算法[J].计算机研究与发展,2007,44(5):815-822. 被引量:10
  • 5米勒.云计算[M].史美林,姜进磊,孙瑞志,等译.北京:机械工业出版社,2009:125-128.
  • 6FOSTER I, YONG ZHAO, RAICU I, et al. Cloud computing and grid computing 360-degree compared[C] // Proceedings of the 2008 Grid Computing Environments Workshop. Washington, DC: IEEE Computer Society, 2008:1 - 10.
  • 7ARMBRUST M, FOX A, GRIFFITH R, et al. Above the clouds: A Berkeley view of cloud eomputing[EB/OL]. [2010 -01 -25]. http://www, eecs. berkeley, edu/Pubs/TechRpts/20Og/EECS-20og- 28. pdf.
  • 8BARROSO L A, DEAN J, HOLZLE U. Web search for a planet: the google cluster architecture[J]. IEEE Micro, 2003, 23(2) : 22 - 28.
  • 9CHIEN A, CALDER B, ELBERT S, et al. Entropia: Architecture and performance of an enterprise desktop grid system[J]. Journal of Parallel and Distributed Computing, 2003, 63(5):597-610.
  • 10KIM J S, NAM B, MARSH M, et al. Creating a robust desktop grid using peer-to-peer services[EB/OL]. [ 2009 - 10 - 16]. ftp://ftp. cs. umd. edu/pub/hpsl/papers/papers-pdf/ngs07.pdf.

共引文献343

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部