期刊文献+

基于平面特征的地面雷达点云配准算法 被引量:3

Point cloud registration algorithm for terrestrial LiDAR based on planar features
原文传递
导出
摘要 针对地面LiDAR点云配准中不同坐标系点云数据存在对应的平面特征不同的问题,文章提出了一种基于总体最小二乘的地面LiDAR点云数据配准算法:通过对分割后的点云数据平面拟合,得到相应法向量;根据不同坐标系中LiDAR点云数据对应的平面法向量,利用反对称矩阵和罗德里格矩阵的性质,用3个独立参数代替3个旋转参数,采用总体最小二乘法建立旋转矩阵解算模型;采用总体最小二乘法确定平移参数的计算公式;最后根据转换后特征点云与对应平面点云的重复情况,给出了配准模型的精度公式。实验结果表明该方法精度较高,可以取得较好的点云配准效果,适合于含有大量重复平面特征的点云数据的配准。 Aiming at the problem that in the terrestrial LiDAR point cloud registration,the corresponding planar characteristics of the data in different coordinate systems are different,the paper proposed a registration method based on Total Least Squares(TLS):the normal vectors of the planes were obtained after fitted from the segmented point cloud data;by taking advantage of the property of the anti-symmetric matrix and Rodriguez matrix,three angle parameters were replaced by three independent elements using the corresponding plane normal vectors of LiDAR point cloud data in different coordinate systems;then the rotation matrix calculation model and the translation parameters formula were established using TLS;finally,the error equation of rotation transformation was deduced by the duplication between the transformed planar points and the corresponding planes,and the registration accuracy was analyzed and compared with ICP.Experimental result showed that the method could be applied in the point cloud registration containing a lot of repetition planar characteristic with its high matching precision.
作者 张东 黄腾
出处 《测绘科学》 CSCD 北大核心 2015年第11期146-149,共4页 Science of Surveying and Mapping
基金 城市与建筑遗产保护教育部重点实验室开放课题(KLUAHC1306)
关键词 地面LiDAR 点云 整体最小二乘 平面块 配准 terrestrial LiDAR point cloud total least squares plane patches registration
  • 相关文献

参考文献9

  • 1CHIBUNICHEV A G, VELIZHEV A B. Automatic Matching of Terrestrial Scan Data using Orientation Histograms[C]//The International Archives of the Photogrammetry,Remote Sensing and Spatial Informa- tion Sciences. Beijing 2008 : 601-603.
  • 2BESL P J, MCKAY N D. A Method for Registration of 3D Shapes[C]//IEEE Transactions on Pattern Analy- sis and Machine Intelligence. IEEE, 1992, 14 (2) 239-256.
  • 3DOLD C. Extended Gaussian Images for the Registra-tion of Terrestrial Scan Data[C]// ISPRS WG Ill/3, III/4, V/3 Worksho P" Laser scanning 2005 ". En schede, the Netherlands, 2005 : 180-185.
  • 4VANDEN WYNGAERD J, VAN GO()L L,KOCH R, et al. Invariant-based Registration of Surface Patches. In:Computer Vision[C]//The Proceedings of the Sev enth IEEE International Conference. Kerkyra, Greece: IEEE,1999(1) :301 306.
  • 5吴敏,周来水,王占东,安鲁陵.测量点云数据的多视拼合技术研究[J].南京航空航天大学学报,2003,35(5):552-557. 被引量:62
  • 6蔡润彬,潘国荣.三维激光扫描多视点云拼接新方法[J].同济大学学报(自然科学版),2006,34(7):913-918. 被引量:30
  • 7姚吉利,韩保民,杨元喜.罗德里格矩阵在三维坐标转换严密解算中的应用[J].武汉大学学报(信息科学版),2006,31(12):1094-1096. 被引量:98
  • 8Golub G H, Van Loan C F. An Analysis of the Total Least Squares Problem [J]. SIAMJ Numer Anal. 1980,17(6) ..883-893.
  • 9官云兰,程效军,施贵刚.一种稳健的点云数据平面拟合方法[J].同济大学学报(自然科学版),2008,36(7):981-984. 被引量:117

二级参考文献28

  • 1姚吉利.三维坐标转换的静态滤波模型[J].武汉大学学报(信息科学版),2005,30(9):825-828. 被引量:20
  • 2Vàrady T, Martin R R, Cox J. Reverse engineering of geometric models-an introduction[J]. Computer Aided Design, 1997,29(4) :255-268.
  • 3Besl P J, McKay N D. A method for registration of 3-D shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14 (2): 239-256.
  • 4Chen Y, Medioni G. Object modeling by registration of multiple range images[A]. Proc IEEE Int'l Conf on Robotics and Automation[C]. 1991. 2724-2729.
  • 5Fan K C, Tsai T H. Optimal shape error analysis of the matching image for a free-form surface [J]. Robotics and Computer Integrated Manufacturing,2001,17: 215-222.
  • 6Li Qingde, Griffiths J G. herative closest geometric objects registration[J]. Computers and Mathematics wit h Applications, 2000,40: 1171 - 1188.
  • 7Mihailo R, Djordje B. Efficient registration of NURBS geometry[J]. Image and Vision Computing,1997,15:925-935.
  • 8Dorai C, Jain A K. Registration and integration of multiple object views for 3D model construction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20 (1): 83 - 89.
  • 9Arun K S, Huang T S, Blostein S D. Least-squares fitting of two 3-D point sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987,9(5) :698-700.
  • 10Umeyama S J. Least-squares estimation of transformation parameters between two point patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13 (4) : 376- 380.

共引文献297

同被引文献32

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部