期刊文献+

电动往复式步态矫形器机构优化设计 被引量:7

Mechanism Design and Optimization for Electric Reciprocating Gait Orthoses
下载PDF
导出
摘要 针对原有往复式步态矫形器对患者体力消耗较大、步态差异大且失真严重、膝关节康复效果微弱等问题,对矫形器进行改进设计,分别在矫形器的髋关节和膝关节处增加了驱动机构,设计出一种电动往复式步态矫形器(Electric reciprocating gait orthosis,ERGO),可通过穿戴在患者下肢上,协助无行走能力的患者实现行走功能。由于人体下肢运动关节的复杂性,电动往复式步态矫形器与人体下肢运动关节不可避免存在一定的差异,因此需要通过机构的优化使得人-机之间髋、膝关节的运动规律及下肢末端轨迹更加接近,从而避免患者在使用过程中由于人-机运动偏差而造成不必要的伤害。在此基础上通过仿真分析和试验验证,证明了电动式往复式步态矫形器的可行性和优化结果的有效性。 Aiming at solving the problems of great physical consumption of patients, serious distortion and big difference in gaits, and weak effect in knee rehabilitation in traditional reciprocating gait orthoses (RGO), improved design is developed in RGO. Driving mechanism is added to knee joints and hip joints on the electric reciprocating gait orthoses to develop an electric reciprocating gait orthoses (ERGO), which can be worn on the lower limb of patients and help those without walking ability to realize walking function. Because of the complexity in the human lower limb movement joints, differences between orthoses and human lower limb movement joint exist inevitably. Therefore, through the optimization in mechanism to make the movement law and terminal trajectory closer in hip and knee between man and machine, unnecessary damage to patients caused by the man-machine movement deviation in the use process is effectively avoided. Based on the above research and experimental tests, the feasibility and effectiveness of optimize results of ERGO is verified.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2015年第21期33-41,共9页 Journal of Mechanical Engineering
基金 北京市科技计划重大资助项目(D141100003614002)
关键词 矫形器 下肢康复 驱动机构 结构设计 优化分析 reciprocating gait orthosis lower limb rehabilitation driving mechanism mechanism design optimization analysis
  • 相关文献

参考文献20

  • 1BLEEKE G, HEEG M, NIEL V H. Ambulation with the reciprocating gait orthosis. Experience in 15 children with myelomeningocele or paraplegia[J]. Acta Orthopaedica Scandinavica, 1997, 68(5): 403-407.
  • 2IJZERMAN M J, BAARDMAN G, HERMENS H J. The influence of the reciprocal cable linkage in the advanced reciprocating gait orthosis on paraplegic gait performance[J]. Prosthetics and Orthotic International, 1997, 21(1): 52-61.
  • 3MIRBAGHERI M M, NIU X, KINDIG M, et al. The effects of locomotor training with a robotic-gait orthosis (Lokomat) on neuromuscular properties in persons with chronic SCI[C]// 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), August 28 - September 1, 2012, San Diego, CA. IEEE, 2012: 3854-3857.
  • 4DUSCHAU W A, BRUNSCH T, LUNENBURGER L, et al. Adaptive support for patient-cooperative gait rehabilitation with the lokomat[C]// 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems Acropolis Conventin Center, September 22-26, 2008, Nice, France. IEEE, 2008: 2357-2361.
  • 5BANALA S K, AGRAWAL S K, SCHOLZ J P. Active leg exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients[C]// Proceedings of the 2007IEEE 10th International Conference on Rehabilitation Robotics, June 12-15, 2007, Noordwijk, Netherlands. IEEE, 2007: 401-407.
  • 6BANALA SK, AGRAWAL S K, KIM S H, et al. Novel gait adaptation and neuromotor training results using an active leg exoskeleton[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(2): 216-225.
  • 7YAMAMOTO S, SHIBATA Y, IMAI S, et al. Development of gait training system powered by pneumatic actuator like human musculoskeletal system[C]// 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), June 29-July 1, 2011, Zurich, Switzerland. IEEE, 2011: 151-158.
  • 8KONG K, MOON H, HWANG B, et al. Robotic rehabilitation treatments: Realization of aquatic therapy effects in exoskeleton systems[C]// IEEE International Conference on Robotics and Automation, May 12-17, 2009, Kobe, Japan. IEEE, 2009: 1923-1928.
  • 9KONG K, MOON H, JEON D. et al. Control of an exoskeleton for realization of aquatic therapy effects[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(2): 191-200.
  • 10KAWAMOTO H, SANKAI Y. Power assist method based on phase sequence driven by interaction between human and robot suit [C]// 13th IEEE International Workshop on Robot and Human Interactive Communication, September 20-22, 2004, Roman. IEEE, 2004: 491-496.

二级参考文献98

共引文献114

同被引文献86

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部