期刊文献+

单颗金刚石磨粒切削氮化硅陶瓷仿真与试验研究 被引量:31

Simulation and Experiment Study for Silicon Nitride Cutting with Single Diamond Grain
下载PDF
导出
摘要 为探索氮化硅陶瓷单颗磨粒切削加工的机理,进行单颗金刚石磨粒切削氮化硅陶瓷的仿真与试验。选用截角八面体模拟金刚石磨粒,基于Johnson—Holmquist ceramic硬脆材料本构模型,采用有限元网格法进行单颗磨粒直线切削仿真,分析工件材料的切屑去除、划痕形貌、应力动态变化与分布、切削力变化等现象,以及工艺参数对切削力的影响。制备单颗金刚石磨粒工具,在平面磨床上进行单颗磨粒切削氮化硅陶瓷的试验,进一步分析划痕形貌、切削力的变化,并验证有限元仿真的正确性。研究表明,划痕光直平整,塑性隆起很少,边缘存在较大尺寸的破碎,划痕内有局部小尺寸的破碎;划痕的深度和宽度比磨粒的切削深度和宽度尺寸略大。应力与切削力存在动态波动。随着砂轮速度的增加,切向力和法向力减小;随着切削深度的增加,切向力和法向力增大。切削力比在4~6之间变化。 To explore the mechanism of silicon nitride cutting with single grain, simulation and experimental are carried out on silicon nitride cutting with single diamond grain. Choosing truncated octahedron to simulate diamond grain, based on the Johnson-Holmquist ceramic brittle material constitutive model, the single grain linear cutting simulation is modeled by finite element method. The phenomena is analyzed for workpiece material chips, scratches morphology, stress changes and distribution, and cutting forces changes, and the effect of process parameters on the cutting force is studied. With the preparation of single diamond grain tools, the silicon nitride cutting experiments are carried on surface grinding machine with cutting depth changing, to further analyze the changes of scratches morphology and cutting forces, and verify the correctness of finite element simulation. The results show that the scratches are direct and brightness, little plastic ridges, with the larger size of broken edge and small partially broken; the scratch depth and width are slightly larger than the grain cutting depth and width. Fluctuations are existed in stress and cutting force. As the wheel speed increases, the tangential force and normal force reduce; cutting depth increases, the tangential force and normal force increase. The cutting force ratio is changing between 4 and 6.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2015年第21期191-198,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金(51505144 51405152) 难加工材料高效精密加工湖南省重点实验室开放基金(E21539) 高等学校博士学科点专项科研基金(20110161110032)资助项目
关键词 单颗磨粒 氮化硅 有限元仿真 截角八面体 Johnson—Holmquist CERAMIC single grain silicon nitride finite element simulation truncated octahedron Johnson-Holmquist ceramic
  • 相关文献

参考文献11

  • 1DOMAN D A. Rubbing & plowing phases in single grain grinding[D]. Canada: DalhousieUniversity, 2008.
  • 2ZHANG P, ZHAO H, SHI C, et al. Influence of double-tip scratch and single-tip scratch on nano-scratching process via molecular dynamics simulation[J]. Applied Surface Science, 2013, 280: 751-756.
  • 3段念,王文珊,于怡青,黄辉,徐西鹏.基于FEM与SPH耦合算法的单颗磨粒切削玻璃的动态过程仿真[J].中国机械工程,2013,24(20):2716-2721. 被引量:15
  • 4JOHNSON G R, HOLMQUIST T J.. An improved computational constitutive model for brittle materials[C]// AIP Conference Proceedings, American Institute of Physics, 1994, 309: 981-984.
  • 5PELLETIER H, GAUTHIER C, SCHIRRER R. Experimental and finite-element analysis of scratches on amorphous polymeric surfaces[J]. Journal of Engineering Tribology, 2008, 222(3): 221-230.
  • 6宿崇,许立,刘元伟,马纪军.基于SPH法的CBN磨粒切削过程数值模拟[J].中国机械工程,2013,24(5):667-671. 被引量:12
  • 7KLECKA M, SUBHASH G. Grain size dependence of scratch-induced damage in alumina ceramics[J]. Wear, 2008, 265(5-6): 612-619.
  • 8MALKIN S. Grinding technology theory and applications of machining with abrasives[M]. America: Halsted Press, 1989.
  • 9TOUPIN R A. Saint-Venant's principle[J]. Archive for Rational MechanicsandAnalysis, 1965, 18(2): 83-96.
  • 10LAMBERTS A P T M J. Numerical simulation of ballistic impacts on ceramic material[D]. Nederland: Eindhoven University of Technology, 2007.

二级参考文献32

  • 1赵恒华,高兴军,蔡光起.超高速磨削冲击成屑机理试验研究[J].机械工程学报,2006,42(9):43-47. 被引量:3
  • 2武志斌.高效磨削的瓶颈与对策[D].南京:南京航空航天大学,2001:4.
  • 3Limido J, Espinosa C, Salaun M, et al. SPH Method Applied to High Speed Cutting Modeling[J]. Inter- national Journal of Mechanical Sciences, 2007, 49 (7) :898-908.
  • 4Medina D F,Chen J K. Three--dimensional Simula- tions of Impact Induced Damage in Composite Structures Using the Parallelized SPH Method[J]. Composites Part A (Applied Science and Manufac- turing), 2000,31 (8) : 853-860.
  • 5Cooper W,Lavine A S. Grinding Process Size Effect and Kinematics Numerical Analysis[J] Journal of Manufacturing Science and Engineering, 2000, 122 (1) :59-69.
  • 6Wang Wanshan, Su Chong, Pang Zirui, et al. Finite Element Simulation of Chip Formation with Single Grain[J]. Key Engineering Material, 2009,416 : 210- 215.
  • 7Malkin S. Grinding Technology: Theory and Appli cations of Machining with Abrasives[M]. Reston American Society of Civil Engineers, 1989.
  • 8Fang Liang,Cen Qihong,Sun Kun,et al. FEM Com- putation of Groove Ridge and Monte Carlo Simula- tion in Two--body Abrasive Wear[J]. Wear, 2005, 258(1/4) : 265-274.
  • 9Klocke F. Modelling and Simulation in Grinding [ C ]//lst European Conference on Grinding, Fortschritt--Berichte VDI Reihe 2 Fertigungstech- nik. Aachen,2003 : 1-27.
  • 10Graham W, Voutsadopoulos C M. Fracture Wear of Grinding Wheel [J]. Int. J. Mach. Tool Des. Res. ,1978,18(2) :95-103.

共引文献50

同被引文献207

引证文献31

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部