期刊文献+

一类带有预防接种的禽流感模型分析 被引量:1

The Analysis based on Avain Influenza Model with Vaccination
下载PDF
导出
摘要 考虑疫苗接种对禽流感病毒传播的影响,建立了一类禽流感传染病动力学模型,得到了禽类子系统的基本再生数。利用李亚普诺夫函数,Bendixon-Dulac定理以及极限方程等理论分析了无病平衡点和地方病平衡点的全局渐近稳定性。最后通过数据模拟进行验证。 Taking into account the impact of vaccination on the spread of the avain influenza ,an epidemic model incorporate vaccination is established,and the basic production number of poultry subsystem is obtained.The globally asymptotic behaviors of disease free equilibrium and epidemic equilibrium have been analyzed by using V function, Dulac function and the limit equation theory. Furthmore,number simulation is obtained.
出处 《科技视界》 2015年第33期35-36,共2页 Science & Technology Vision
基金 国家自然科学基金青年项目(NO.11301320)
关键词 禽流感模型 基本再生数 全局稳定 接种 Avain influenza model Basic production number Globally stable Vaccination
  • 相关文献

参考文献5

二级参考文献25

  • 1曾大有,张文治,唐艳容.关于流行病的数学模型[J].华北航天工业学院学报,2005,15(3):29-30. 被引量:3
  • 2Mills C E, Robins J M, Bergstrom C T, Lipsitch M,Pandemic influenza: risk of multiple introduc- tions and the need to prepare for them[J]. PLoS Medicine, 2006, 3(6): 1-5.
  • 3Ferguson N M,Cummings D A T, Cauchemez S, et.al.,Strategies for containing an emerging influenza pandemic in Southeast Asia[J]. Nature, 2005, 437: 209-214.
  • 4Grais R F, Ellis J H, Glass G E, Assessing the impact of airline travel on the geographic spread of pandemic influenza[J]. Eur J Epidem, 2003,18: 1065-1072.
  • 5Germann T C, Kadau K, Longini Jr I M ,Macken C A, Mitigation strategies for pandemic influenza in the United States[J]. PNAS, 2006, 103(15): 5935-5940.
  • 6Menach ALe, et al. Key strategies for reducing spread of avian influenza among commercial poultry holdings:lessons for transmission to humans[J]. Proc R Soc B, 2006, 273: 2467-2475.
  • 7Tiensin T,Nielen M, et.al, Transmission of the highly pathogenic avian influenza virus H5N1 within flocks during the 2004 epidemic in Thailand[J]. JID 2007, 196: 1679-1684.
  • 8van den Driessche P, Watmough J, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Math Biosci, 2002, 180: 29448.
  • 9Lasalle J P, The Stablity of Dynamical Systems[M]. Regional Confererce Series in Applied Mathe- motics Philadelphia, SIAM 1976.
  • 10H.W.Hethcote.Mathematics of infec-tious diseases[].SIAM Review.2005

共引文献19

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部