期刊文献+

相邻场群上有迁移的动物疫病传播模型分析

Analysis of Animal Disease Transmission Model with Migration of Nearby Meadows
下载PDF
导出
摘要 本文主要研究不同距离场群之间疫病的交叉感染和动物的迁移对动物疫病传播的影响.首先,根据疫病的传播基理,建立了相邻场群上有动物迁移的一类动物疫病传播模型.其次,利用微分方程定性稳定性理论,讨论了系统无病平衡点和地方病平衡点的存在性,证明了系统的无病平衡点是全局渐近稳定的.最后,对结果进行数值分析,定量分析了基本再生数对于不同参数的敏感性.结果表明,个体与环境细菌的接触传染系数以及个体从非相邻场群的迁入系数对基本再生数的影响较大. The paper mainly examines the influemce of cross-infection among meadows and animal migration on the spread of animal diseases. Firstly, based on mechanism of epidemic transition, an animal disease spreading model with animal migration among adjacent mead- ows is established. Then, applying the qualitative stability theory of differential equations, we discuss the existence of disease-free equilibrium and endemic equilibrium, proving that the disease-free equilibrium is globally asymptotically stable. Finally, numerical simulations are performed to verify the theoretical analysis results and the sensitivity of the basic reproduction number with respect to different parameters. The results indicate that the transmission coefficient of individuals contacting the bacteria around environment and the coefficient of individuals immigration from nonadjacent farms have signifiant influence on the basic reproduction number.
作者 樊洁茹 靳祯
出处 《工程数学学报》 CSCD 北大核心 2015年第6期861-875,共15页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11171314 11331009)~~
关键词 迁移 基本再生数 稳定性 持续性 migration basic reproduction number stability continuity
  • 相关文献

参考文献14

  • 1王国栋,刘书梅.国内外牛布鲁氏菌病防治研究进展[J].安徽农学通报,2013,19(16):134-135. 被引量:26
  • 2王光宇,王占兵.布鲁氏菌病的综合防治措施[J].湖北畜牧兽医,2013,34(6):32-33. 被引量:2
  • 3聂静,万辉,张娟.奶牛布鲁氏菌病的动力学分析[J].中北大学学报(自然科学版),2013,34(2):93-97. 被引量:3
  • 4Gonzlez-Guzmdn J, Naulin R. Analysis of a model of bovine Brucellosis using singular perturbation[J]. Journal of Mathematical Biology, 1994, 33(2): 211-223.
  • 5Hou Q, Sun X D, Zhang J. Modeling the transmission dynamics of sheep Brucellosis in Inner Mongolia Autonomous Region, China[J]. Mathematical Biosciences, 2013, 242(1): 51-58.
  • 6Zhang J, Sun G Q, Sun X D, et al. Prediction and control of Brucellosis transmission of dairy cattle in Zhejiang province, China[J]. PLoS One, 2014, 9(11): e108592.
  • 7呙林兵.Gerschgorin圆盘定理在严格对角占优矩阵中的应用[J].高师理科学刊,2011,31(5):29-30. 被引量:4
  • 8van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for com- partmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1): 29-48.
  • 9Diekmann O, Heesterbeek J A P, Metz J A J. On the definition and the computation of the basic repro- duction ratio R0 in models for infectious diseases in heterogeneous populations[J]. Journal of Mathematical Biology, 1990, 28(4): 365-382.
  • 10Thieme H. Convergence results and a Poincar&Bendixson trichotomy for asymptotically autonomous dif- ferential equations[J]. Mathematical Biosciences, 1992, 30(7): 755-763.

二级参考文献23

  • 1文学忠,于瑞华,姜秋杰.布鲁氏菌病近况[J].吉林畜牧兽医,2007,28(5):20-23. 被引量:19
  • 2屠伯埙,徐诚浩,王芬.高等代数学[M】.上海:上海科学技术出版社,1987.
  • 3王松桂.矩阵不等式[M].北京:科学出版社.2006:33-36.
  • 4蒋轶文,白羽.职业性布鲁氏菌病研究进展[C].第十八次全国职业病学术交流会论文集,2009:658-662.
  • 5刘凤岐.吉林省近年布氏菌病疫情及分析[C].全国人畜共患病学术研讨会论文集,2011:216-219.
  • 6Andrei K. Lyapunov {unctions and global stability for SIR and SIRS epidemiological models with non-linear transmission [J]. Bulletin of Mathematical Biology, 2006, 30: 615-626.
  • 7Zinsstag J, Roth F, Orkhon D. A model of animal human brucellosis transmission in Mongolia [J ]. Preventive Veterinary Medicine, 2005, 69: 77-95.
  • 8Jorge G G. Analysis of a model of bovine brucellosisusing singular perturbations[J]. Journal of Mathematical Biology, 1994, 33: 211-223.
  • 9Matope G, Bhebhe E. Risk factors for brucella spp. infection in smallholder household herds [J]. Epidemiol. Infect., 2011, 139 157-164.
  • 10Joao P. Hespanha, uniform stability of switched linear systems: extensions of LaSalle's invarianee principle[J]. IEgE, 2004, 49(4): 470-482.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部