期刊文献+

Black-Scholes方程的条件Lie-Bcklund对称和不变子空间 被引量:1

Conditional Lie-Bcklund Symmetry and Invariant Subspace for Black-Scholes Equation
下载PDF
导出
摘要 偏微分方程的精确解蕴含了方程丰富的信息,对于描述各种现象的发展规律起着至关重要的作用.因此偏微分方程的精确解成为了数学、物理、经济等领域研究的热点问题.本文研究了金融数学中最重要的模型之一Black-Scholes方程的广义分离变量解.运用条件Lie-Bcklund对称与不变子空间理论相结合的方法,本文得到了形如欧拉方程的条件Lie-Bcklund对称.该方程允许的条件Lie-Bcklund对称与高阶变系数的常微分方程相对应.同时,我们还得到了该方程允许此特征的所有精确解. The exact solution of partial differential equations, which contains rich information for the equations, is very important for describing the development of various phenomena and thus becomes a research focus of scientific fields such as mathematics, physics, economy and so on. In this paper, the generalized separable solutions for Black-Scholes equation, which is one of most important models arising in financial mathematics, are discussed. By using the conditional Lie-Backlund symmetry and invariant subspace theory, we obtain the conditional Lie-Backlund symmetries, which are similar to Euler equation. The conditional Lie-Backlund symmetries, which are admitted by Black-Scholes, ave corresponding to high-order variable coefficient ordinary differential equations. At the same time, all of exact solutions associated to the conditional Lie-Backlund symmetries are performed.
出处 《工程数学学报》 CSCD 北大核心 2015年第6期883-892,共10页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金数学天元基金(11226195 11326167) 陕西省教育厅基金(JC11217) 河南省自然科学基金(122300410166) 河南省教育厅自然科学基金(13A110119)
关键词 BLACK-SCHOLES方程 条件Lie—Bcklund对称 不变子空间 欧拉方程 Black-Scholes equation conditional Lie-Baklund symmetry invariant subspace Euler equation
  • 相关文献

参考文献15

  • 1Bluman G W, Kumei S. Symmetries and Differential Equations[M]. New York: Springer, 1989.
  • 2Olver P J. Application of Lie Groups to Differential Equations[M]. New York: Springer, 1993.
  • 3Lie S. Uber die integration durch bestimmte integrals yon einer klasse linearer partiller differential gleichun- gen[J]. Archiv der Mathematik, 1881, 6(3): 328-368.
  • 4Fushchych W I, Zhdanov R Z. Anti-reduction of the nonlinear wave equati0n[J]. Proceeding of the Academy Sciences, Ukraine, 1993, 11(1): 37-44.
  • 5Zhdanov R Z. Conditional Lie-Bicklund symmetry and reduction of evolution equation[J]. Journal of Physics A: Mathematical and General, 1995, 28(47): 3841-3850.
  • 6Fokas A S, Liu Q M. Nonlinear interaction of traveling waves of nonintegrable equations[J]. Physical Review Letters, 1994, 72(21): 3293-3296.
  • 7Galaktionov V A, Svishchevshii S R. Exact Solutions and Invariant Subspaces of Nonlinear Partial Differ- ential Equations in Mechanics and Physics[M]. London: Chapman and Hall, 2007.
  • 8Miller W. Mechanism for Variable Separation in Partial Differential Equations and Their Relationship to Group Theory[M]. London: World Scientific, 1989.
  • 9Qu C Z, Zhang S L, Liu R C. Separation of variables and exact solutions to quasilinear diffusion equations with nonlinear source[J]. Physica D: Nonlinear Phenomena, 2000, 144(1-2): 97-123.
  • 10Pucci E, Saccomandi G. Evolution equations invariant surface conditions and functional separation of variables[J]. Physica D: Nonlinear Phenomena, 2000, 139(1-2): 28-47.

二级参考文献22

  • 1F.Black and M.Scholes,J.Polit.Econ.81 (1973) 637.
  • 2R.C.Merton,Bell.J.Econ.Manag.Sci.4 (1973) 141.
  • 3P.Wilmott,S.Howison,and J.Dewynne,The Mathematics of Financial Derivatives,A Student Introduction,Cambridge University Press,Cambridge (2002).
  • 4M.R.Rodrigo and R.S.Mamon,Appl.Math.Lett.19(2006) 398.
  • 5R.Frey,Perfect Option Replication for a Large Trader,Ph.D.Thesis,ETH,Zurich (1996).
  • 6R.Frey,Market Illiquidity as a Source of Model Risk in Dynamic Hedging,Model Risk,Risk Publication,London(2000) 125 136.
  • 7R.Frey and A.Stremme,Math.Finance 7 (1997) 351.
  • 8L.A.Bordag,Symmetry Reductions of a Nonlinear Option Pricing Model,arxiv.math.AP/0604207 (2006).
  • 9P.J.Olver,Applications of Lie Groups to Differential Equations,Springer,New York (1986).
  • 10G.W.Bluman and S.Kumei,Symmetries and Differential Equations,Springer,New York (1989).

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部