期刊文献+

Navier-Stokes方程九模类Lorenz方程组的动力学行为及数值仿真 被引量:3

The Dynamical Behavior and Numerical Simulation of a Nine-modes Lorenz Equations of Navier-Stokes Equations
下载PDF
导出
摘要 为深入探讨流体流动的稳定性,本文研究了平面不可压缩Navier-Stokes方程九模类Lorenz方程组的动力学行为及数值仿真问题.对平面不可压缩Navier-Stokes方程进行傅里叶展开,采用新的截取模式得到一个九模类Lorenz系统,研究了系统的对称性、耗散性和吸引子的存在性,讨论了该方程组的定常解及其稳定性.基于分岔图与最大Lyapunov指数谱和庞加莱截面以及功率谱,文中阐述并分析了此新型混沌系统的基本动力学行为,仿真分析了系统动力学行为的演化历程,解释了随参数变化系统的不动点、周期态和混沌态等之间转变的物理过程. In order to explore the stability of the flow, we study the nonlinear dynamical behavior and simulation problem of nine-modes Lorenz system for a two-dimensional incompressible Navier-Stokes equations. A new nine-modes truncation of Fourier series of Navier-Stokes equations for a two-dimensional incompressible fluid on a torus is obtained. The symmetry, dissipation and existence of attractors of the system are studied, and the stationary solution and their stability properties are discussed. Based on numerical simulation results of bifurcation diagram, the Lyapunov exponent spectrum, Poincare section and power spectrum of the system, some basic dynamical behavior of the new system are investigated briefly, the physics process and evolution of the dynamical behavior from fixed point to periodic and chaotic behaviors are presented simultaneously.
作者 王贺元 崔进
出处 《工程数学学报》 CSCD 北大核心 2015年第6期893-897,共5页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11572146) 国家重点基础研究发展计划(973计划)(2012CB416605) 辽宁省教育厅科研基金(L2013248) 锦州市科学技术基金(13A1D32)~~
关键词 Navier—Stokes方程 混沌 分岔 动力学行为 Navier-Stokes equations chaos bifurcation dynamical behavior
  • 相关文献

参考文献9

  • 1Lorenz E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2): 130-141.
  • 2Hilborn R C. Chaos and Nonlinear Dynamics[M]. Oxford: Oxford University Press, 1994.
  • 3Liao X X Luo H G, Fu Y L, et aJ. The globally exponentially attractive set and positive invariant set of Lorenz system group[J]. Science in China-E, 2007, 37(6): 757-769.
  • 4Li D M, Lu J A, Wa X Q, et al. Estimating the bounded for the Lorenz family of chaotic systems[J]. Chaos, Solitions and Fractals, 2005, 23(2): 5294534.
  • 5Yu P, Liao X X. New estimates for globally attractive set and positive invariant set of the family of the Lorenz system[J]. International Journal of Bifurcation and Chaos, 2006, 16(11): 3383-3390.
  • 6Boldrighini C, Franceschini V. A five-dimensional truncation of the plane incompressible Navier-Stokes equations[J]. Communications in Mathematical Physics, 1979, 64(2): 159-170.
  • 7Franceschini V, Tebaldi C. A seven-modes truncation of the plane incompressible Navier-Stokes equa- tions[J]. Journal of Statistical physics, 1981, 25(3): 397-417.
  • 8崔进,王贺元.流动系统的混沌行为及仿真与控制[J].工程数学学报,2014,31(4):539-544. 被引量:1
  • 9Li T Y, Yorke J A. Period three implies chaos[J]. The American Mathematical Monthly, 1975, 82(10): 985-992.

二级参考文献3

  • 1Valter Franceschini,Claudio Tebaldi.A seven-mode truncation of the plane incompressible Navier-Stokes equations[J].Journal of Statistical Physics.1981(3)
  • 2Carlo Boldrighini,Valter Franceschini.A five-dimensional truncation of the plane incompressible Navier-Stokes equations[J].Communications in Mathematical Physics.1979(2)
  • 3王贺元.Navier-Stokes方程五模类Lorenz方程组的动力学行为及数值仿真[J].应用数学与计算数学学报,2010,24(2):13-22. 被引量:7

同被引文献11

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部