期刊文献+

A Piecewise Modeling Approach for Climate Sensitivity Studies:Tests with a Shallow-Water Model 被引量:2

A Piecewise Modeling Approach for Climate Sensitivity Studies:Tests with a Shallow-Water Model
原文传递
导出
摘要 In model-based climate sensitivity studies, model errors may grow during continuous long-term inte- grations in both the "reference" and "perturbed" states and hence the climate sensitivity (defined as the difference between the two states). To reduce the errors, we propose a piecewise modeling approach that splits the continuous long-term simulation into subintervals of sequential short-term simulations, and updates the modeled states through re-initialization at the end of each subinterval. In the re-initialization processes, this approach updates the reference state with analysis data and updates the perturbed states with the sum of analysis data and the difference between the perturbed and the reference states, thereby improving the credibility of the modeled climate sensitivity. We conducted a series of experiments with a shallow-water model to evaluate the advantages of the piecewise approach over the conventional continuous modeling approach. We then investigated the impacts of analysis data error and subinterval length used in the piecewise approach on the simulations of the reference and perturbed states as well as the resulting climate sensitivity. The experiments show that the piecewise approach reduces the errors produced by the conventional continuous modeling approach, more effectively when the analysis data error becomes smaller and the subinterval length is shorter. In addition, we employed a nudging assimilation technique to solve possible spin-up problems caused by re-initializations by using analysis data that contain inconsistent errors between mass and velocity. The nudging technique can effectively diminish the spin-up problem, resulting in a higher modeling skill. In model-based climate sensitivity studies, model errors may grow during continuous long-term inte- grations in both the "reference" and "perturbed" states and hence the climate sensitivity (defined as the difference between the two states). To reduce the errors, we propose a piecewise modeling approach that splits the continuous long-term simulation into subintervals of sequential short-term simulations, and updates the modeled states through re-initialization at the end of each subinterval. In the re-initialization processes, this approach updates the reference state with analysis data and updates the perturbed states with the sum of analysis data and the difference between the perturbed and the reference states, thereby improving the credibility of the modeled climate sensitivity. We conducted a series of experiments with a shallow-water model to evaluate the advantages of the piecewise approach over the conventional continuous modeling approach. We then investigated the impacts of analysis data error and subinterval length used in the piecewise approach on the simulations of the reference and perturbed states as well as the resulting climate sensitivity. The experiments show that the piecewise approach reduces the errors produced by the conventional continuous modeling approach, more effectively when the analysis data error becomes smaller and the subinterval length is shorter. In addition, we employed a nudging assimilation technique to solve possible spin-up problems caused by re-initializations by using analysis data that contain inconsistent errors between mass and velocity. The nudging technique can effectively diminish the spin-up problem, resulting in a higher modeling skill.
出处 《Journal of Meteorological Research》 SCIE CSCD 2015年第5期735-746,共12页 气象学报(英文版)
基金 Supported by the National Natural Science Foundation of China(41330527 and 41275102) Fundamental Research Funds for the Central Universities(lzujbky-2013-k16) Program for New Century Excellent Talents in Universities(NCET-11-0213)
关键词 climate sensitivity modeling approach nudging technique model uncertainty climate sensitivity, modeling approach, nudging technique, model uncertainty
  • 相关文献

参考文献3

二级参考文献37

共引文献20

同被引文献26

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部