期刊文献+

A first-order dynamical model of hierarchical triple stars and its application

A first-order dynamical model of hierarchical triple stars and its application
下载PDF
导出
摘要 For most hierarchical triple stars, the classical double two-body model of zeroth-order cannot describe the motions of the components under the current observational accuracy. In this paper, Marchal's first-order analytical solution is implemented and a more efficient simplified version is applied to real triple stars. The results show that, for most triple stars, the proposed first-order model is preferable to the zerothorder model both in fitting observational data and in predicting component positions. For most hierarchical triple stars, the classical double two-body model of zeroth-order cannot describe the motions of the components under the current observational accuracy. In this paper, Marchal's first-order analytical solution is implemented and a more efficient simplified version is applied to real triple stars. The results show that, for most triple stars, the proposed first-order model is preferable to the zerothorder model both in fitting observational data and in predicting component positions.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2015年第11期1857-1866,共10页 天文和天体物理学研究(英文版)
基金 supported by the National Natural Science Foundation of China under Grant Nos. 11178006 and 11203086
关键词 hierarchical triple fitting simplified stars dynamical Delaunay positions observational coordinate hierarchical triple fitting simplified stars dynamical Delaunay positions observational coordinate
  • 相关文献

参考文献22

  • 1Aarseth, S. J. 2003, Gravitational N-Body Simulations (Cambridge: Cambridge Univ. Press).
  • 2Binney, J., & Merrifield, M. 1998, Galactic Astronomy (Princeton: Princeton Univ. Press).
  • 3Byrd, P. F., & Friedman, M. 1971, Handbook of Elliptic Integrals for Engineers and Scientists (2nd ed.; Berlin Springer-Verlag).
  • 4Docobo, J. A., Tamazian, V. S., Balega, Y. Y., et al. 2008, A&A, 478, 187.
  • 5Harrington, R. S. 1968, AJ, 73, 190.
  • 6Harrington, R. S. 1969, Celestial Mechanics, 1,200.
  • 7Hartkopf, W. I., Mason, B. D., & Worley, C. E. 2001, AJ, 122, 3472.
  • 8Kozai, Y. 1962, AJ, 67,591.
  • 9Lawson, C. L., & Hanson, R. J. 1995, Solving Least Squares Problems (2nd ed.; Philadelphia: SIAM).
  • 10Li, P. J., Fu, Y. N., & Sun, Y. S. 2009, A&A, 504, 277.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部