期刊文献+

基于Apriori算法的地铁施工致险非线性因素的映射指标研究 被引量:3

RESEARCH ON MAPPING INDICATORS BETWEEN THE NONLINEAR RISK FACTORS OF SUBWAY CONSTRUCTION BASED ON APRIORI ALGORITHM
原文传递
导出
摘要 地铁施工环境极其复杂,诸多风险因素发生并组合后易引发重大灾害事故,但是对所有风险因素及组合同时进行监控很难实现.文章研究目标是在降低风险因素组合维度的基础上,指出它们的映射方式.首先从地铁施工灾害事故中找出风险因素组合,即事故的最小割集集合.然后,利用关联规则Apriori算法进行数据压缩,确定频繁项集.最后通过风险因素出现的频数确定其在传递过程中的作用,分析出地铁施工事故的非线性风险因素之间的映射关系指标.研究成果在实际应用中,降低了风险因素与灾害事故之间的维数,并为提高识别精度和节省控制成本带来一定的贡献. The environment of subway construction is extremely complicated, many risk factors and their portfolios can cause the explosion of serious disaster accidents. However, it is difficult to monitor all the risk factors and their portfolios simultaneously. The aim of this paper is to reduce the dimensions of risk factors and based on that to propose their mapping ways. We first find out the risk factors in the disaster accidents and their combinations, which are the minimal cut sets of the accident. Second, we employ the association rules Apriori algorithm for data compression and determine frequent item sets. Finally, according to the frequency of risk factors, we determine the effect of risk factors on the risk transition to determine the mapping indicators among nonlinear risk factors in subway construction accidents. The ap- plication of our results can reduce the dimensions between disaster accidents and risk factors, and provide great potential contribution to improve the identification accuracy and reduce relevant costs.
出处 《系统科学与数学》 CSCD 北大核心 2015年第10期1178-1193,共16页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(71173152)资助课题
关键词 APRIORI算法 非线性映射 致险因素 关联规则. Apriori algorithm, nonlinear mapping, risk factors, association rules.
  • 相关文献

参考文献17

  • 1Bjelland H, Aven T. Treatment of uncertainty in risk assessments in the Rogfast road tunnel project. Safety Science, 2013, 55: 34-44.
  • 2李术才,周宗青,李利平,石少帅,许振浩.岩溶隧道突水风险评价理论与方法及工程应用[J].岩石力学与工程学报,2013,32(9):1858-1867. 被引量:91
  • 3Eskesen D, Tengborg S, Per, Kampmann, Jorgen, Hoist Veicherts, Trine. Guidelines for tunnel- ing risk management: International tunneling association working group No. 2. Tunneling and Underground Space Technology, 2004, 19(3): 217-237.
  • 4Milan H. Probabilistic risk optimization of road tunnels. Structural Safety, 2009, 31(3): 260-266.
  • 5Yazdani-Chamzini A. Proposing a new methodology based on fuzzy logic for tunneling risk as- sessment. Journal of Civil Engineering & Management, 2014, 21(1): 82-94.
  • 6Aneziris O N, Papazoglou I A, Kallianiotis D. Occupational risk of tunneling construction. Safety Science, 2010, 48(8): 964-972.
  • 7Cardenas, Ibsen Chivataa, A1-Jibouri, Saad S H, Halman, Johannes I M, Tol Frits A. Modeling risk-related knowledge in tunneling projects. Risk Analysis: An International Journal, 2014, 34(2): 323-339.
  • 8Proszyfiski W. An approach to response-based reliability analysis of quasi-linear errors-in- variables models. Journal of Geodesy, 2013, 87(1): 89-99.
  • 9Dang N V, Bay L B. Efficient strategies for parallel mining class association rules. Expert Systems with Applications, 2014, 41(10): 4716.
  • 10Beirand V, Mobasher-Kashani M, AbuBakar A. Multi-objective PSO algorithm for mining nu- merical association rules without a priori discretization. Expert Systems with Applications, 2014, 41(9): 4259-4273.

二级参考文献24

共引文献90

同被引文献17

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部