期刊文献+

一类4-差分置换的构造 被引量:3

CONSTRUCTION OF A CLASS OF DIFFERENTIALLY4-UNIFORM PERMUTATIONS
原文传递
导出
摘要 为了抵抗已知的攻击,用于分组密码S-盒中的多输出布尔函数应具有较好的差分性质,较高的非线性度和较高的代数次数等密码学性质.在某些分组密码中,还要求这些多输出布尔函数是有限域F2n上的置换,这里n为偶数.文章将F2n分为两个子集,通过在这两个子集上分别定义不同置换的方法构造了一类4-差分置换,证明了这类置换具有最优的代数次数,且含有高非线性度的子类.进一步地,通过实例对该函数类与12类4-差分置换进行了CCZ不等价性分析. To resist against known attacks, multi-output Boolean functions used in the substitution boxes (S-boxes) of block ciphers should have good differentially uniform property, high nonlinearity and algebraic degree. In addition, these functions should be permutations over the finite field F2n in certain block ciphers, where n is an even integer. In this paper, by dividing F2n into two subsets and defining permutations on each of them, we construct a class of differentially 4-uniform permutations. It is proved that each permutation in this class has optimal algebraic degree, and this class contains a subclass consisting of permutations with high nonlinearity. Moreover,presenting some examples, we analyze the CCZ-inequivalence between this class of differentially 4-uniform permutations with twelve known ones.
出处 《系统科学与数学》 CSCD 北大核心 2015年第10期1194-1208,共15页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(61170257)和(11301161)资助课题
关键词 4-差分置换 S-盒 CCZ等价. Differentially 4- uniform permutation, substitution box, CCZ equivalence.
  • 相关文献

参考文献20

  • 1Biham E, Shamir A. Differential cryptanalysis of DES-like cryptosystems. J. Cryptol, 1991, 4(1): 3-72.
  • 2Matsui M. Linear cryptanalysis method for DES cipher. Lecture Notes in Computer Science, 1994, 765: 386-397.
  • 3Knudsen L. Truncated and higher order differentials. Lecture Notes in Computer Science, 1995, 1008: 196-221.
  • 4Beth T, Ding C. On almost perfect nonlinear permutations. Lecture Notes in Computer Science, 1994, 765: 65-76.
  • 5Nyberg K. Differentially uniform mappings for cryptography. Lecture Notes in Computer Science, 1994, 765: 55-64.
  • 6Browning K, Dillon J, McQuistan M, Wolfe A. An APN permutation in dimension six. Contem- porary Mathematics Journal of American Mathematical Society, 2010, 518(1): 33-42.
  • 7Kasami T. Weight enumerators for several classes of the 2nd order binary Reed-Muller codes. Information and Control, 1971, 18(3): 33-49.
  • 8Bracken C, Leander G. A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree. Finite Fields Appl., 2010, 16(4): 231-242.
  • 9Li Y, Wang M. Constructing differentially 4-uniform permutations over GF(2^2m) from quadratic APN permutations over GF(2^2m+l). Des. Codes Cryptogr., 2014, 61(6): 249-264.
  • 10Bracken C, Tan C, Tan Y. Binomial differentially 4-uniform permutations with high nonlinearity. Finite Fields Appl., 2012, 18(3): 537-546.

同被引文献4

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部