期刊文献+

Trapped Bose-Einstein condensates in synthetic magnetic field 被引量:1

Trapped Bose-Einstein condensates in synthetic magnetic field
原文传递
导出
摘要 The rotational properties of Bose-Einstein condensates in a synthetic magnetic field are studied by numerically solving the Gross-Pitaevskii equation and comparing the results to those of condensates confined in a rotating trap. It appears to be more difficult to add a large angular momentum to condensates spun up by the synthetic magnetic field than by the rotating trap. However, strength- ening the repulsive interaction between atoms is an effective and realizable route to overcoming this problem and can at least generate vortex-lattice-like structures. In addition, the validity of the Feynman rule for condensates in the synthetic magnetic field is verified. The rotational properties of Bose-Einstein condensates in a synthetic magnetic field are studied by numerically solving the Gross-Pitaevskii equation and comparing the results to those of condensates confined in a rotating trap. It appears to be more difficult to add a large angular momentum to condensates spun up by the synthetic magnetic field than by the rotating trap. However, strength- ening the repulsive interaction between atoms is an effective and realizable route to overcoming this problem and can at least generate vortex-lattice-like structures. In addition, the validity of the Feynman rule for condensates in the synthetic magnetic field is verified.
出处 《Frontiers of physics》 SCIE CSCD 2015年第5期115-120,共6页 物理学前沿(英文版)
基金 s The authors are grateful to Weizbu Bao for valuable assistance in the numerical and programming techniques. This work was supported by the National Key Basic Research Pro- grain of China (Grant No. 2013CB922002), the National Natural Science Foundation of China (Grant No. 11074021), and the Fun- damental Research Funds for the Central Universities of China.
关键词 Bose-Einstein condensates synthetic magnetic field VORTICES Bose-Einstein condensates, synthetic magnetic field, vortices
  • 相关文献

参考文献1

二级参考文献120

  • 1D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H. J. Miesner, J. Stenger, and W. Ketterle, Phys. Rev. Lett., 1998, 80(10): 2027.
  • 2T. Ohmi and K. Machida, J. Phys. Soc. Jpn., 1998, 67(6): 1822.
  • 3T. L. Ho, Phys. Rev. Lett., 1998, 81(4): 742.
  • 4J. Stenger, S. Inouye, D. M. Stamper-Kurn, H. J. Miesner, A. P. Chikkatur, and W. Ketterle, Nature, 1998, 396(6709): 345.
  • 5C. K. Law, H. Pu, and N. P. Bigelow, Phys. Rev. Lett., 1998, 81(24): 5257.
  • 6M. Koashi and M. Ueda, Phys. Rev. Lett., 2000, 84(6): 1066.
  • 7T. L. Ho and L. Yin, Phys. Rev. Lett., 2000, 84(11): 2302.
  • 8H. J. Miesner, D. M. Stamper-Kurn, J. Stenger, S. Inouye, A. P. Chikkatur, and W. Ketterle, Phys. Rev. Lett., 1999, 82(11): 2228.
  • 9H. Pu, C. K. Law, S. Raghavan, J. H. Eberly, and N. P. Bigelow, Phys. Rev. A, 1999, 60(2): 1463.
  • 10M. S. Chang, C. D. Hamley, M. D. Barrett, J. A. Sauer, K. M. Fortier, W. Zhang, L. You, and M. S. Chapman, Phys. Rev. Lett., 2004, 92(14): 140403.

共引文献3

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部