摘要
采用热压与致密化工艺分别在1 000、1 100、1 200和1 300℃下制备出纳米粘土增强一维炭/炭复合材料(C/C)。利用XRD、激光拉曼光谱等研究纳米粘土的热转变规律,利用体密度、导热率、抗弯强度及模量等数据研究纳米粘土的热转变对C/C复合材料的影响。采用场发射扫描电镜分析试样微观形貌。结果表明,热压温度对纳米粘土增强C/C复合材料的结构和性能影响显著。1 200℃热压制备的C/C复合材料抗弯强度最大为230.1 MPa,模量最大为87.3 GPa。C/C复合材料中的纳米粘土1 200℃热压转变成莫来石、方石英、无序粘土、有序炭及无序炭。这些组分均匀分散在基体中,可改善基体炭结构以及基体炭和炭纤维的界面,提高复合材料的力学性能;1 300℃热压时纳米粘土中的Si O2与基体炭发生碳热还原反应,破坏了基体结构,导致材料的抗弯强度和模量降低,而反应产物Si C提高了材料的导热率。
A 1D-carbon/carbon composite (C/C) with an organic- modified nanoclay filler was fabricated by hot-pressing and densification at temperatures of 1 000, 1 100, 1 200 and 1 300 ℃. The organic modified nanoclay was prepared by substituting ions between the layers of an inorganic clay with an organic quaternary ammonium salt. The thermal transformation of the nanoclay fol- lowing the hot-pressing was investigated by X-ray diffraction and Raman spectroscopy and the effect of the transformation on the bulk density, porosity, thermal conductivity, flexural strength and modulus of the C/C were characterized. The microstructure of the specimens was observed by scanning electron microscopy. Results indicate that the hot-pressing temperature has a significant im- pact on the structure and properties of the nanoclay-reinforced C/C composite. The C/C composite with the nanoclay filler hot- pressed at 1 200 ℃ exhibited the best mechanical properties with a flexural strength of 230.1 MPa and modulus of 87.3 GPa. At this temperature, the nanoclay transformed into mullite, cristobalite, disordered nanoclay, ordered carbon and disordered carbon dispers- ed uniformly in the carbon matrix. This modified the structure of the carbon matrix and tightened the interface between the matrix and the fibers, thus increasing the mechanical properties of the C/C. Carbothermal reduction took place between SiO2 and the carbon matrix at 1 300℃, which damaged the matrix structure and decreased flexural strength and modulus of the composite. However, the presence of, the reaction product (SiC) increased the thermal conductivity.
出处
《新型炭材料》
SCIE
EI
CAS
CSCD
北大核心
2015年第5期451-458,共8页
New Carbon Materials
基金
国家自然科学基金(51202267)
教育部留学回国人员科研启动基金~~
关键词
纳米粘土
C/C复合材料
热压温度
结构
性能
Nanoclay
C/C composite
Hot-pressing temperature
Structure
Properties