期刊文献+

基于受限玻尔兹曼机和T-S模型的料位软测量方法的研究 被引量:1

Study on Soft Sensor Approach for Fill Level Based on RBM and T-S Fuzzy Model
下载PDF
导出
摘要 球磨机是火力发电厂的基础设备,可靠测量料位是实现系统优化的关键。针对球磨机音频信号中存在强噪声、非线性等问题,结合受限玻尔兹曼机(RBM)、减法聚类和T-S模糊模型,提出了一种软测量方法。首先采用微调后的受限玻尔兹曼机提取特征,去除存在的噪声,然后使用减法聚类辨识模糊模型的初始结构,最后采用T-S模糊模型预测球磨机料位。通过在球磨机运行数据上进行模型验证,验证了该方法的实用性和可行性。 Ball mill is a basic equipment in thermal power plant,which is a key factor for the mill system optimization to measure the fill level accurately. The acoustic frequency spectrum of ball mill has strong noise and nonlinearity,which reduces the measurement accuracy. To solve the problems,a soft sensor method is proposed,which combines restricted Boltzmann machine( RBM),subtractive clustering and Takagi-Sugeno fuzzy model.Firstly RBM having been fine-tuned is employed to extract the features and remove the existing noises. Then subtractive clustering is used for fuzzy system structure identification. At last the fill level is predicted by the T-S model. The results based on the collected data of ball mill validate the feasibility and practicability.
出处 《科学技术与工程》 北大核心 2015年第31期201-204,共4页 Science Technology and Engineering
基金 国家自然科学基金项目(61450011) 山西省自然科学基金项目(2015011052)资助
关键词 受限玻尔兹曼机 特征提取 减法聚类 T-S模糊模型 球磨机料位 restricted Boltzmann machine feature extraction subtractive clustering Takagi-Sugeno fuzzy model ball mill fill level
  • 相关文献

参考文献9

  • 1陈绍炳,张铁军,徐治皋,冷伟.基于机理分析的球磨机系统动态模糊建模方法[J].动力工程,2005,25(2):244-248. 被引量:9
  • 2Tang J, Wang D, Chai T. Predieting mill load using partial least squares and extreme learning machines. Soft Computing, 2012; 16 (9) : 1585-1594.
  • 3汤健,柴天佑,赵立杰,岳恒,郑秀萍.基于振动频谱的磨矿过程球磨机负荷参数集成建模方法[J].控制理论与应用,2012,29(2):183-191. 被引量:24
  • 4汤健,赵立杰,岳恒,柴天佑.磨机负荷检测方法研究综述[J].控制工程,2010,17(5):565-570. 被引量:31
  • 5Teh Y W, Hinton G E. Rate-coded restricted Boltzmann machines for face recognition. Advances in Neural Information Processing Systems, 2001 ; 908-914.
  • 6Cal X, Hu S, Lin X. Feature extraction using restricted Boltzmann machine for stock price prediction. 2012 IEEE International Confer- ence on Computer Science and Automation Engineering (CSAE), Zhangjiajie: IEEE, 2012:80-83.
  • 7Hinton G. Training products of experts by minimizing contrastive di- vergence. Neural computation,2002 ; 14 ( 8 ) : 1771-1800.
  • 8Takagi T, Sugeno M. Fuzzy identification of systems and its applica- tion to modeling and control. IEEE Trans on System, Man, and Cy- bernetics, 1985 ; 15 ( 1 ) : 116-132.
  • 9王恒,贾民平,许飞云,陈左亮,谢超.基于FKCM的球磨机系统T-S模糊建模方法[J].系统仿真学报,2009,21(2):530-533. 被引量:5

二级参考文献90

共引文献62

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部