摘要
球磨机是火力发电厂的基础设备,可靠测量料位是实现系统优化的关键。针对球磨机音频信号中存在强噪声、非线性等问题,结合受限玻尔兹曼机(RBM)、减法聚类和T-S模糊模型,提出了一种软测量方法。首先采用微调后的受限玻尔兹曼机提取特征,去除存在的噪声,然后使用减法聚类辨识模糊模型的初始结构,最后采用T-S模糊模型预测球磨机料位。通过在球磨机运行数据上进行模型验证,验证了该方法的实用性和可行性。
Ball mill is a basic equipment in thermal power plant,which is a key factor for the mill system optimization to measure the fill level accurately. The acoustic frequency spectrum of ball mill has strong noise and nonlinearity,which reduces the measurement accuracy. To solve the problems,a soft sensor method is proposed,which combines restricted Boltzmann machine( RBM),subtractive clustering and Takagi-Sugeno fuzzy model.Firstly RBM having been fine-tuned is employed to extract the features and remove the existing noises. Then subtractive clustering is used for fuzzy system structure identification. At last the fill level is predicted by the T-S model. The results based on the collected data of ball mill validate the feasibility and practicability.
出处
《科学技术与工程》
北大核心
2015年第31期201-204,共4页
Science Technology and Engineering
基金
国家自然科学基金项目(61450011)
山西省自然科学基金项目(2015011052)资助
关键词
受限玻尔兹曼机
特征提取
减法聚类
T-S模糊模型
球磨机料位
restricted Boltzmann machine feature extraction subtractive clustering Takagi-Sugeno fuzzy model ball mill fill level