期刊文献+

基于最大稳定极限区域的车牌定位 被引量:3

License Plate Localization Based on MSER
下载PDF
导出
摘要 车牌定位是车牌识别系统的重要组成部分,目前常用的车牌定位方法主要受环境尤其是光照影响较大。针对这一情况,提出基于最大稳定极值区域特征的车牌定位算法,利用最大稳定极值区域特征特有的仿射不变性和对光照的适应性,提取图像中最大稳定极值区域;尤其是车牌字符区域。在排除部分噪声区域后,根据车牌字符区域稳定的几何特征和排列规则,将满足条件的相邻字符区域组成最近邻对,进一步剔除噪声区域。然后将所提取的最近邻对进行合并即可以得到所有可能的车牌区域。实验结果表明,相比较目前常用车牌字符切分算法,在切分的准确性和稳定性上都有较大提高。 License plate localization is a important step in the License Plate Recognition system. Nowadays,the main localization method depends on the environment especially the light have agreat effect on the detection accuracy. In response to this situation,a license plate detection algorithm was proposed based on maximum stable extremal regions. The main idea is using MSER's affine invariant features and MSER's invariance to lighting change to extract license plate image's MSERS,especially the license plate character regions. After exckuding some noise regions,then according to the geometrical characteristics and spatial arrangement of license plate characters,the adjacent characters can construct a nearest neighbor pairs if the two characters reions meet the corresponding conditions,which also can exclude interference regions. Then all the extracted nearest neighbor pairs was merged,in this way can be detect all the candidate license plate regions. Experimental result shows that the proposed algorithm improve the the accuracy and stability compared to the current license plate detection algorithm.
出处 《科学技术与工程》 北大核心 2015年第31期212-217,共6页 Science Technology and Engineering
关键词 车牌定位 最大稳定极值区域(MSER) 噪声剔除 最近邻对 矩形区域合并 license plate localization MSER remove noise regions nearest neighbor pairs merge rectangle regions
  • 相关文献

参考文献14

  • 1Shi X F, Zhao W Z, Shen Y H. Automatic license plate reengnition system based on color image processing. Lecture Notes in Cnmpnler Science. Berlin : Springe ,2005 ;3483 : 1159-1168.
  • 2Jia W, Zhang H, He X. Mean shift for accurate license plate locali- zation. Intelligent Transportation Systems, 2005. Proceedings. 2005 IEEE. IEEE, 2005:566 -571.
  • 3Anagnostopoulos C N E, Anagnoslopoulos I E, Loumos V, et al. A license plate-recognition algorithm for intelligent transportation system applications. Intelligent Transportation Systems, IEEE Transactions on, 2006 ;7 ( 3 ) : 377-392.
  • 4李波,曾致远,周建中.一种自适应车牌图像定位新方法[J].中国图象图形学报,2009,14(10):1978-1984. 被引量:4
  • 5Malas J, Chum O, Urba M, et al. Robust wide baseline stereo from maximally stable exteral regions. Image and Vision Computing,2004; 22(10) :384-393.
  • 6Donoser M, Bischof H. Efficient maximally stable extrenal region ( MSER ) tracking. In: Proc. IEEE Conf. Comp. Vis. Patt Recogn, 2006:553-560.
  • 7Forssen P E, Lowe D G. Shape descriptors for maximally stable ext- renal regions. In: Proc. IEEE Int. Conf. Comp. Vis. Patt Reeogn, 2007 : 1-8.
  • 8Mikolajczyk K, Tuytelaars T, Schmid G,et al. A comparision of affine region detectors, lnternational Jounal of Computer Vision, 2005 ; 65 ( 1 ) :43-72.
  • 992GA.中华人民共和国公共安全行业标准:中华人民共和国机动车号牌,2007.
  • 10Yang Xi, Zhao Yong, Fang Jin. A license plate segmentiation al- gotithm based on MSER and template matching. ICSP2014 Proceed- ings,2014 : 1195-1199.

二级参考文献26

  • 1黄豪杰,李榕,常鸿森.基于自适应灰度形态学滤波的车牌图像分割[J].微电子学与计算机,2007,24(4):95-98. 被引量:10
  • 2Bai Hong-liang, Liu Chang-ping. A hybrid license plate extraction method based on edge statistics and morphology [ A ] . In: Proceedings of the 17th International Conference on Pattern Recognition[ C], Cambridge, UK, 2004: 831-834.
  • 3Chang Shyang-lih, Chen Li-shien, Chung Yun-chung, et al. Automatic license plate recognition [ J ]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5( 1 ) : 42-53.
  • 4Qin Zhong, Shi Sheng-li, Xu Jian-min, et al. Method of license plate location based on comer feature [ A ] . In: Proceedings of the 6th World Congress on Intelligent Control and Automation [ C ], Dalian, China ,2006 : 8645 -8649.
  • 5Ning Jin, Tang Yuan Y. Text area localization under complex background using wavelet decomposition [A]. In: Proceedings of the Sixth International Conference on Document Analysis and Recognition [C], Seattle, WA, USA, 2001: 1126-1130.
  • 6Anagnostopoulos C E, Anagnostopoulos I E, Psoroulas I D, Loumos V, Kayafas E. License plate recognition from still images and video sequences: a survey. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(3): 377-391.
  • 7Jiao J B, Ye Q X, Huang Q M. A configurable method for multi-style license plate recognition. Pattern Recognition, 2009, 42(3): 358-369.
  • 8Bai H L, Liu C P. A hybrid license plate extraction method based on edge statistics and morphology. In: Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK: IEEE, 2004. 831-834.
  • 9Zheng D, Zhao Y, Wang J. An efficient method of license plate location. Pattern Recognition Letters, 2005, 26(15): 2431-2438.
  • 10Shapiro V, Gluhchev G, Dimov D. Towards a multinational car license plate recognition system. Machine Vision and Applications, 2006, 17(3): 173-183.

共引文献14

同被引文献13

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部