期刊文献+

双重准可分解4-圈系

Doubly Near Resolvable 4-Cycle Systems
下载PDF
导出
摘要 设G=λKv是λ重v阶完全图,即任意一对顶点间恰有λ条边相连.图G的一个m-圈系是长度为m的圈的集合C,其中所有圈的边恰好构成图G边集的划分.若C中的m-圈能够划分成为准平行类R={R1,R2,…,Rλv/2},那么就称该m-圈系C为v阶准可分解m-圈系,记为(v,m,λ)-NRCS,且称R为该设计的一个准分解类.如果(v,m,λ)-NRCS C存在一对正交准分解类,则称之为双重准可分解m-圈系,记为(v,m,λ)-DNRCS.当m=2和3时,(v,2,2)-DNRCS以1v型Room方和(v,3,2)-DNRBIBD为大家所知.Mullin和Wallis建立了1v型Room方存在的谱系.Abel、Lamken、Vanstone和Wang等建立了(v,3,2)-DNRBIBD存在的谱系.文章利用直接构作和递推构作完全建立了(v,4,2)-DNRCS存在的谱系.即证明了(v,4,2)-DNRCS存在的充分必要条件是v≡1(mod 4),其中v=9是唯一例外. Let G = λKvbe the complete graph on v vertices in which each pair of vertices is joined by exactly λedges. An m-cycle system of G is a collection C of cycles of length m whose edges partition the edges of G. An mcycle system C of λKnis said to be near resolvable if the m-cycles in C can be partitioned into near parallel classes R = {R1, R2, …, Rλv/2} and C is denoted by(v, m, λ)-NRCS, R is called a near resolution. If a(v, m, λ)-NRCS has a pair of orthogonal near resolutions, it is named as doubly resolvable and is denoted by(v, m, λ)-DNRCS. For m = 2, 3,(v, m, 2)-DNRCSs are known as Room squares of type 1vand(v, 3, 2)-DNRBIBDs, respectively.Mullin and Wallis had established the spectrum for Room squares of type 1v. Abel_Lamken_Vanstone and Wang had established the spectrum for( v, 3, 2)- DNRBIBDs. In this paper, applying direct constructions and recursive constructions, the spectrum of the existence of(v, 4, 2)-DNRCSs is established, i.e. It is shown that there exists a(v, 4, 2)-DNRCS, if and only if v≡1(mod 4) with definite exception v = 9.
机构地区 南通大学理学院
出处 《南通大学学报(自然科学版)》 CAS 2015年第3期49-56,共8页 Journal of Nantong University(Natural Science Edition) 
基金 国家自然科学基金项目(11371207) 南通市应用研究计划项目(BK2014060) 南通大学研究生科技创新计划项目(YKC13019)
关键词 准可分解 圈系 圈标架 near resolvablility cycle system cycle frame
  • 相关文献

参考文献17

  • 1BRYANT D, RODGER C A. Cycle decompositions [M]// COLBOURN C J, DINITZ J H. CRC Handbook of Combi- natorial Designs. Boca Raton : CRC Press, 2006 : 373-382.
  • 2ALSPACH B, GAVLAS H, AJNA M, et al. Cycle decom- positions IV:complete directed graphs and fixed length di- rected cycles[J]. Journal of Combinatorial Theory, Series A, 2003, 103(1) : 165-208.
  • 3FU C M, FU H L, MILICI S, et al. Almost resolvable di- rected 2r-cycle systems[J]. Journal of Combinatorial De- signs, 1995, 3(6) :443-447.
  • 4COLBOURN C J, VANSTONE S A. Doubly resolvable twofold triple systems[J]. Congressus Numerantium, 1982, 34:219-223.
  • 5LAMKEN E R, VANSTONE S A. Existence results for dou- bly near resolvable (v, 3, 2)-BIBDs [J ]. Discrete Mathemat- ics, 1993, 120(1/2/3) : 135-148.
  • 6DINITZ J H, STINSON D R. Room squares and related de- signs [ M ]//Contemporary design theory:a collection of sur- veys. New York : Wiley, 1992 : 137-204.
  • 7DINITZ J H. Room squares[M]//COLBOURN C J, DINITZ J H. CRC Handbook of Combinatorial Designs. Boca Raton: CRC Press, 2006:584-590.
  • 8MULLIN R C, WALLIS W D. The existence of Room squares [ J ]. Aequationes Mathematicae, 1975, 13 ( 1 ) : 1-7.
  • 9LAMKEN E R. 3-Complementary frames and doubly near resolvable (v, 3, 2)-BIBDs[J]. Discrete Mathematics, 1991, 88(1) :59-78.
  • 10LAMKEN E R. The existence of doubly near resolvable (v, 3, 2)-BIBDs[J]. Journal of Combinatorial Designs, 1994, 2(6) :427-440.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部