期刊文献+

二进双参数仿积的加权有界性

Weighted Boundedness of Dyadic Bi-parameter Paraproduct
下载PDF
导出
摘要 为了证明双参数双线性的Coifman-Meyer乘子算子定理,一种二进双参数仿积∏(f,g)(x,y)=R∈RΣ1|R|1/2<f,ΦR1>,<g,ΦR2>ΦR3(x,y)被引入,其Lr有界性被证明,即‖∏(f,g)‖Lr茱‖f‖Lp‖f‖Lq,其中1/r=1/p+1/q,q<∞.但目前仍没有相应的加权有界性结果.利用对偶原理研究了∏(f,g)的加权有界性,即成立‖∏(f,g)‖Lr(ω)茱‖f‖Lp(ω)‖g‖Lp(ω),其中1/r=1/p+1/q,1<p,q<∞,ω∈Ar(R×R). To prove bi-linear and bi-parameter Coifman-Meyer multiplier theorem, Mathematicians have introduced the following dyadic bi-parameter paraproduct1123∏(f, g)(x, y) =Σ1/2f, ΦR, g, ΦRΦR(x, y)R∈R R r and have proved its L boundedness, that is ‖∏(f, g)‖rL‖f‖pL‖f‖q, L where 1/r = 1/p + 1/q, q ∞. But there is no any result of weighted estimates of the above paraproduct. In this paper, the weighted boundedness of ∏( f, g)via duality was investigated. that is, ‖∏( f, g)‖r L(ω)‖f‖p L(ω)‖g‖p L(ω), where 1/r = 1/p + 1/q, 1 p, q ∞,ω∈Ar(R × R).
作者 丁卫
机构地区 南通大学理学院
出处 《南通大学学报(自然科学版)》 CAS 2015年第3期73-77,共5页 Journal of Nantong University(Natural Science Edition) 
基金 国家自然科学基金项目(11271209) 江苏政府留学奖学金项目(JS-2015-126)
关键词 仿积 双参数 加权有界性 平方函数 paraproduct bi-pararneter weighted boundedness square function
  • 相关文献

参考文献1

二级参考文献19

  • 1Gundy, R., Stein, E. M.: Hp theory for the polydisk. Proc. Nat. Acad. Sci., 76, 1026-1029 (1979).
  • 2Carleson, L.: A counterexample for measures bounded on Hp for the bidisc. Mittag-Leffler Report No. 7, 1974.
  • 3Fefferman, R., Stein, E. M.: Singulsr integrals on product spaces. Adv. Math., 45, 117 143 (1982).
  • 4Feffermen, R.: Harmonic analysis on product spaces. Ann. of Math., 126, 109 130 (1987).
  • 5Fefferman, R.: Calderdn-Zygmund theory for product domains-HP spaces. Proc. Nat. Acad. Sci., 83, 840-843 (1986).
  • 6Chang, S. Y. A., Fefferman, R.: Some recent developments in fourier analysis and Hp theory on product domains. Bull. Amer. Math. Soc., 12, 1-43 (1985).
  • 7Chang, S. Y. A., Fefferman, R.: The Calder6n-Zygmund decomposition on product domains. Amer. J. Math., 104, 455-468 (1982).
  • 8Chang, S. Y. A., Fefferman, R.: A continuous version of duality of H1 with BMO on the bidisc. Ann. of Math., 112, 179-201 (1980).
  • 9Journe, J. L.: Calderman Zygmund operators on product spaces. Rev. Mat. Iberoamericana, 1, 55 92 (1985).
  • 10Journe, J. L.: Two problems of Calder6n-Zygmund theory on product spaces. Ann. Inst. Fourier (Grenoble), 38, 111-132 (1988).

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部