期刊文献+

基于PSO-RBF的建筑能耗预测模型研究 被引量:7

Prediction Model of Building Energy Consumption Based on PSO-RBF
下载PDF
导出
摘要 通过研究分析夏热冬冷地区公共建筑能耗变化特点,建立了RBF神经网络建筑能耗预测模型。在此基础上运用微粒群算法对模型优化,建立了基于PSO-RBF的建筑能耗预测模型。利用大量数据构造样本集,运用软件分别对优化前后的预测模型进行训练,并运用到典型公共建筑能耗值的预测实例中。结果表明基于PSO-RBF的建筑能耗预测模型的学习能力和预测能力强,能较准确地实现公共建筑能耗预测。 The model of energy consumption prediction is built after analyzing characteristics on energy consumption changes of public building in hot summer and cold winter area. Particle swarm optimization algorithm is used to optimize the model, and the PSO-RBF neural network prediction model is established. Using the energy consumption data of subject research, the samples of building energy consumption is built. Then the RBF neural network and PSO-RBF neural network are trained on MA TLAB. Experiments are conducted to predict energy consumption values of typical public buildings. The results show that accuracy of the prediction model is improved obviously after being optimized, and it has strong learning and predicting ability. The model can predict energy consumption value of public buildings accurately.
出处 《建筑节能》 CAS 2015年第11期109-112,共4页 BUILDING ENERGY EFFICIENCY
关键词 RBF神经网络 微粒群算法 能耗预测模型 radial basis function(RBF) neural network particle swarm optimization algorithm pre-diction model of energy consumption
  • 相关文献

参考文献4

  • 1Man C T,Wang K,Zhang L Y.A New Training Algorithm for RBF Neu- ral Network Based on PSO and Simulation Study[C]//Proceedings of IEEEInternational Conference on Computer Science and Information Engineer- ing,Harbin,China,2009:641-645.
  • 2胡静,曾建潮,谭瑛.动态环境下一种改进的微粒群算法[J].系统工程理论与实践,2008,28(4):96-100. 被引量:3
  • 3张顶学,关治洪,刘新芝.基于PSO的RBF神经网络学习算法及其应用[J].计算机工程与应用,2006,42(20):13-15. 被引量:44
  • 4Zhang J R,Zhang J.A hybrid particle swarm optimization back-propaga- tion algorithm for feed forward neural network training[J].Applied Mathe- matics and Computation,2007,185:1026-1037.

二级参考文献18

  • 1刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践,2005,25(6):54-58. 被引量:122
  • 2单世民,邓贵仕.动态环境下一种改进的自适应微粒群算法[J].系统工程理论与实践,2006,26(3):39-44. 被引量:16
  • 3王旭东,邵惠鹤,范懋基.改进的RBF神经元网络及其应用[J].上海交通大学学报,1996,30(4):132-136. 被引量:14
  • 4张友民,李庆国,戴冠中,张洪才.一种RBF网络结构优化方法[J].控制与决策,1996,11(6):667-671. 被引量:24
  • 5Vittorio Manirzzo.Genetic evolution of the topology and weight distribution of networks[J].IEEE Trans on Neural Networks,1994;5(1):39~53
  • 6Kennedy J,Eberhart R.Particle Swarm Optimization[C].In:IEEE Intpl Conf on Neural Networks,1995 ;4:1942~1948
  • 7Shi Y,Eberhart R.A modified particle swarm optimizer[C].In:IEEE World Congress on Computational Intelligence,1998:69~73
  • 8Kennedy J, Eberhart R C. Particle swarm optimization[C].Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia. Piscataway, NJ : IEEE Press, 1995, IV : 1942 - 1948.
  • 9Hu X, Eberhart R C. Adaptive particle swarm optimization: Detection and response to dynamic systems [ C].Proceedings of the IEEE International Conference on Evolutionary Computation, Honolulu, Hawaii, USA. Piscataway, NJ. : IEEE Press ,2002 : 1666 - 1670.
  • 10Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments[ C].Proceedings of the International Conference on Artificial Intelligence, Las Vegas, Nevada, USA, 2000, I :429 - 434.

共引文献45

同被引文献64

引证文献7

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部