期刊文献+

雷公藤红素增强多柔比星抑制肝癌细胞系Huh7细胞活性的实验研究 被引量:3

Celastrol Enhances the Cytotoxicity of Doxorubicin via Inhibiting the Glucose Metabolism in Hepatocellular Carcinoma Cell Line Huh7
下载PDF
导出
摘要 目的观察雷公藤红素增强多柔比星对肝癌细胞的杀伤活性及机制。方法设0.5、1、2μmol/L浓度的雷公藤红素为雷公藤红素1、2、3组,设0.1、1g/m L浓度的多柔比星为多柔比星1、2组;MTT法检测多柔比星单独治疗及联合雷公藤红素治疗对肝癌细胞系Huh7的杀伤活性。荧光定量PCR方法检测人正常胎肝细胞系L-O2及肝癌细胞系Huh7、Hep G2和PLC的PKM2表达水平。MTT法检测PKM2表达载体转染对雷公藤红素联合多柔比星杀伤Huh7细胞疗效的影响。结果与对照组Huh7细胞活力零抑制率比较,雷公藤红素1、2、3组分别为(2.6±0.9)%、(4.7±1.3)%(P均<0.05)、(8.8±1.9)%(P<0.05);多柔比星1、2组分别为(7.5±1.9)%、(61.4±4.2)%(P均<0.05);1μmol/L雷公藤红素联合0.1、1g/m L多柔比星较多柔比星1、2组,Huh7细胞活力抑制率明显上升[(58.7±3.8)%比(7.5±1.9)%,P<0.05;(89.7±6.7)%比(61.4±4.2)%,P<0.05]。PKM2相对表达水平,相对人正常肝细胞系L-O2细胞系的(1.0±0.05),Huh7细胞系为(15.2±0.6)(P<0.05),Hep G2细胞系为(11.8±0.5)(P<0.05),PLC细胞系为(13.4±0.7)(P<0.05);雷公藤红素1、2、3组分别下调为(0.70±0.05)(P<0.05)、(0.42±0.04)(P<0.05)、(0.31±0.03)(P<0.05);多柔比星组无下调作用;1μmol/L雷公藤红素联合0.1、1g/m L多柔比星后PKM2相对表达水平较多柔比星1、2组明显下降[(0.44±0.04)比(0.98±0.07),P<0.05;(0.41±0.03)比(1.01±0.07),P<0.05]。转染PKM2表达载体后,1μmol/L雷公藤红素联合0.1、1g/m L多柔比星对Huh7细胞活力抑制率较未转染组下降[(60.5±4.3)%比(19.3±2.0)%,P<0.05;(91.6±6.9)%比(69.6±4.5)%,P<0.05]。结论雷公藤红素通过下调PKM2的表达抑制肿瘤细胞的糖代谢,增强多柔比星对肝癌细胞系Huh7的杀伤活性。 Objective To investigate the effect of celastrol on doxorubicin therapy in hepatocellular carcinoma(HCC) in vitro. Methods HCC cell line Huh7 cells were treated with celastrol alone at 0.5, 1, 2 μmol/L or doxorubicin alone at concentration of 0.1 and 1g/m L or the combination of celastrol(1μmol/L) and doxorubicin(0.1and 1g/m L). MTT assay was performed to determine the viability inhibition of doxorubicin plus celastrolon Huh7 cells. RT-q PCR analysis was performed to detect the expression of PKM2 in normal liver cell line L-O2 and HCC cell lines Huh7, Hep G2, and PLC. PKM2 expression vector was constructed and then transfected into Huh7 cells treated with celastrol plus doxorubicin. The effect of PKM2 vectors on celastrol plus doxorubicin therapy was detected by MTT assay. Results The Huh7 cell viability inhibition rate was 2.6% ±0.9% in 0.5μmol/L celastrol group, 4.7% ±1.3% in 1μmol/L celastrol group, 8.8% ±1.9% in 2μmol/L celastrol group; 7.5% ±1.9% in 0.1μg/m L doxorubicin single group, 61.4%±4.2% in 1μg/m L doxorubicin single group, all with a significant difference to that of control group(all P 〈0.05). Compared with doxorubicin single group, the cell viability inhibition rate increased to58.7% ±3.8% in 1μmol/L celastrol +0.1μg/m L doxorubicin group and 89.7% ±6.7% in 1μmol/L celastrol +1μg/m L doxorubicin group(P 〈0.05). The relative expression of PKM2 was as follows: 1.0 ±0.05 on L-O2, 15.2 ±0.6 on Huh7, 11.8±0.5 on Hep G2, and 13.4±0.7 on PLC(P 〈0.05). Celastrol decreased the expression of PKM2 on Huh7(0.70±0.05), Hep G2(0.42±0.04), and PLC(0.31±0.03) cells(P 〈0.05). No effect was observed in doxorubicin single groups, but the expressions of PKM2 in 1μmol/L celastrol+0.1μg/m L doxorubicin group and 1μmol/L celastrol+1μg/m L doxorubicin group were lower than those of doxorubicin single group(0.44 ±0.04 vs 0.98 ±0.07; 0.41 ±0.03 vs1.01±0.07; all P 〈0.05). The synergism of celastrol to doxorubicin was inhibited after the transfection of PKM2, and the cell viability inhibition rate was as follows: 60.5% ±4.3% in 1 μmol/L celastrol +0.1μg/m L doxorubicin group,91.6%±6.9% in 1μmol/L celastrol+1μg/m L doxorubicin group, 19.3%±2.0% in 1μmol/L celastrol+0.1μg/m L doxorubicin+pc DNA3.1-PKM2 group, 69.6% ±4.5% in 1μmol/L celastrol+1μg/m L doxorubicin +pc DNA3.1-PKM2 group(P 〈0.05). Conclusion Celastrol enhances the cytotoxicity of doxorubicin via inhibiting the glucose metabolism in HCC cell line Huh7. This may relate to the downregulation of PKM2 in Huh7 cells.
作者 丁成国
出处 《浙江中西医结合杂志》 2015年第11期999-1002,共4页 Zhejiang Journal of Integrated Traditional Chinese and Western Medicine
关键词 肝癌细胞系 HUH7 雷公藤红素 PKM2 糖代谢 多柔比星 hepatocellular carcinoma cell line Huh7 celastrol PKM2 glucose metabolism doxorubicin
  • 相关文献

参考文献2

二级参考文献50

  • 1Hanahan D and Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011,144: 646-674.
  • 2Warburg O and Dickens F and Kaiser-Wilhelm-Institut fiir B. The Metabolism of Tumours; Investigations from the Kaiser Wilhelm institute for biology, Berlin-Dahlem. London: Constable & Co., 1930.
  • 3Warburg O. On the origin of cancer cells. Science 1956, 123: 309-314.
  • 4Warburg O. On respiratory impairment in cancer cells. Science 1956, 124: 269-270.
  • 5Mazurek S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol 2011, 43: 969-980.
  • 6Brugge JS and Efikson R. Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature 1977, 269: 346-348.
  • 7Cooper JA, Reiss NA, Schwartz RJ and Hunter T. Three glycolytic enzymes are phosphorylated at tyrosine in cells transformed by Rous sarcoma virus. Nature 1983, 302: 218-223.
  • 8Mazurek S. Pyruvate kinase Type M2: a key regulator within the tumour metabolome and a tool for metabolic profiling of tumours. Ernst Schering Found Symp Proc 2007, 4: 99-124.
  • 9Noguchi T, Inoue H and Tanaka T. The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by altemative RNA spli- cing. J Biol Chem 1986, 261: 13807-13812.
  • 10Noguchi T, Yamada K, Inoue H, Matsuda T and Tanaka T. The L-and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. J Biol Chem 1987, 262: 14366-14371.

共引文献7

同被引文献27

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部