期刊文献+

Energy Harvesting From Sea Waves With Consideration of Airy and JONSWAP Theory and Optimization of Energy Harvester Parameters 被引量:2

Energy Harvesting From Sea Waves With Consideration of Airy and JONSWAP Theory and Optimization of Energy Harvester Parameters
下载PDF
导出
摘要 One of the new methods for powering low-power electronic devices at sea is a wave energy harvesting system. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on avoiding a battery charging system. Studies have been done on energy harvesting from sea waves, however, considering energy harvesting with random JONSWAP wave theory, then determining the optimum values of energy harvested is new. This paper does that by implementing the JONSWAP wave model, calculating produced power, and realistically showing that output power is decreased in comparison with the more simple Airy wave model. In addition, parameters of the energy harvester system are optimized using a simulated annealing algorithm, yielding increased produced power.
出处 《Journal of Marine Science and Application》 CSCD 2015年第4期440-449,共10页 船舶与海洋工程学报(英文版)
关键词 energy harvesting sea waves JONSWAP Airy wave model piezoelectric material beam vibration simulated annealing algorithm 能量参数 收割机 收获 海浪 优化 功率电子器件 通风 电池充电系统
  • 相关文献

参考文献31

  • 1Adrezin R, Haym B (1999). Response of a tension leg platform to stochastic wave forces. Probabilistic Engineering Mechanics, 14 (1), 3-17. DOI: 10.1016/S0266-8920(98)00012-5.
  • 2Ali SF, Michael F, Sondipon A (2011). Analysis of energy harvesters for highway bridges. Journal of Intelligent Material Systems and Structures, 22(16), 1929-1938. DOI: 10.1177/1045389X11417650.
  • 3Carter DJT (1982). Prediction of wave height and period for a constant wind velocity using the JONSWAP results. Ocean Engineering, 9(1), 17-33. DOI: 10.1016/0029-8018(82)90042-7.
  • 4Deb K (2001). Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, Inc., Chichester, UK.
  • 5Erturk A (2011). Piezoelectric energy harvesting for civil infrastructure system applications: Moving loads and surface strain fluctuations. Journal of Intelligent Material Systems and Structures, 22 (17), 1959-1973. DOI: 10.1177/1045389X11420593.
  • 6Farinholt KM, Miller N, Sifuentes W, MacDonald J, Farrar CR (2010). Energy harvesting and wireless energy transmission for embedded SHM sensor node. Structural Health Monitoring, 9(3), 269-280. DOI: 10.1177/1475921710366647.
  • 7Han SM, Benaroya H (2000). Non-linear coupled transverse and axial vibration of a compliant structure, Part 2: Forced vibration. Journal of Sound and Vibration, 237(5), 875-900. DOI: 10.1006/jsvi.2000.3148.
  • 8Haritos N (2007). Introduction to the analysis and design of offshore structures-An overview. Electronic Journal of Structural Engineering Special Issue: Loading on Structures, 7, 55-65.
  • 9Haupt RL, Haupt SE (2004). Practical genetic algorithms. 2nd ed, John Wiley & Sons, Hoboken, USA.
  • 10Kern W(1991). Simulated annealing and Boltzmann machines: A stochastic approach to combinatorial optimization and neural computing (Emile Aarts and Jan Korst). SIAM Review, 33(2), 323-323. DOI: 10.1137/1033080.

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部