期刊文献+

新型层叠式粒子滤波可视跟踪

A New Stacked Particle Filter for Visual Tracking
下载PDF
导出
摘要 由于光照的变化、形变、姿势的变化,传统的粒子滤波算法会发生跟踪漂移。影响了跟踪算法的准确性和稳定性。发生漂移的主要原因是目标函数不够平滑,从而使得更新的状态存在较大误差。本文提出了一种新型的层叠式粒子滤波算法,该方法在离散域提取基于核的直方图作为目标模型,通过改进传统的粒子滤波算法,实现对目标由粗到细的跟踪。在公开测试集上与当前主流的跟踪算法比较,结果表明本文提出的算法在跟踪精度上提高了20%,并取得了很好的实时性和鲁棒性。 In the framework of traditional particle filter, object is always drifted for the illumination light changing, deformation and poses changing, which affects the accuracy and robust performance of tracker, The reason is that there is not smooth in the objective function. Error will accumulate during the state updating process. A new stack particle filter is proposed to represent target model by the kernel histogram in the discrete fields. It can track the target from coarse to fine by the modified particle filter. Extensive experimental results show that the proposed algorithm performs 20% improvement in the accuracy, favorably time expedition and robustness against state-of-the-art methods.
出处 《光电工程》 CAS CSCD 北大核心 2015年第11期62-68,共7页 Opto-Electronic Engineering
基金 福建省教育厅科技项目(JA12263 JB11127) 福州市科技合作项目(2013-G-86)
关键词 目标跟踪 目标表示 离散域模型 粒子滤波 object tracking target representation discrete field particle filter
  • 相关文献

参考文献1

二级参考文献6

  • 1BERGMAN N, DOUCET A. Markov Chain Monte Carlo Data Association for Target Tracking [A]. In IEEE International Conference on Acoustics, Speech, and Signal processing(ICASSP) [C]. Linkping, Sweden: IEEE, 2000.
  • 2DOUCET A, DEFREITAS N, GORDON N. Sequential Monte Carlo Methods in Practice[M]. New York: Springer Verlag,2001.
  • 3FREUND Y, SCHAPIRE R. E. A Decision-theoretic Generalization of On-line Learning and an Application to Boosting [J].Computational Learning Theory, 1995, 28(6): 23-27.
  • 4HUE. C, CADRE Le J. P, PEREZ P. Tracking Multiple Objects with Particle Filtering [J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(3): 791-812.
  • 5NEEDHAM C. J, BOYLE R. D. Tracking Multiple Sports Players through Occlusion, Congestion and Scale [A]. British Machine Vision Conference [C]. Leeds, UK: IEEE, 2001.
  • 6LIU Tian-jian, ZHU Sha-nan. Eyes Detection and Tracking Based on.Entropy in Particle Filter [A]. International Conference Control and Automation[C]. Budapest, Hungary: IEEE, 2005.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部