期刊文献+

红外热成像技术在铜电解电流分布测量中的应用 被引量:7

The Application of Infrared Thermography in the Current-distribution Measurement of Copper Electrolysis
下载PDF
导出
摘要 针对铜电解槽中阴极棒电流值无法实时测量的问题,应用红外热成像技术采集电解槽阴极棒的红外图像。对原始图像进行处理与分析的基础上,获取阴极棒的表面温度值。其次,通过理论分析与数据验证,结合COMSOL仿真软件数据建立了温度与电流之间的函数关系模型,进而求出电流值。对比实测电流值与模型电流值,结果表明:电解槽的总电流误差均在±5%以内,各阴极棒的电流误差基本在±12%以内,仅个别阴极棒电流误差偏大。该方法不仅实现了对阴极棒电流值的在线监测,而且对极间短路故障的检测提供了依据。 Aiming at the problem that current of the cathode bar can't be measured in real-time in copper electrolytic tank, we used the technology of infrared thermography to acquire infrared image of the cathode bar. On the basis of process and analysis of the original image, surface temperature values of the cathode bar were obtained. Furthermore, the functional model of temperature-current was established combining with the data of COMSOL simulation software model through theoretical analysis and data validation and we got the current values. With comparison between the measured current and model current, results showed that the total current error of electrolytic tank is all within ± 5%, the current error of every cathode bar is almost within ± 12%, and only exceptional current error is relatively large. This method not only realizes the online monitoring of the cathode current value, and provides the basis for the detection of the short circuit fault.
出处 《红外技术》 CSCD 北大核心 2015年第11期981-985,共5页 Infrared Technology
基金 国家科技部科技支撑计划项目 编号:2012BAEB09
关键词 红外热成像 铜电解槽 模型辨识 故障检测 infrared thermal imaging, copper electrolytic tank, model identification, fault detection
  • 相关文献

参考文献12

  • 1张文林,李坚.浅谈铜电解精炼中的极间短路[J].有色冶金节能,2006,23(4):26-29. 被引量:10
  • 2Bayliss C R. Modern techniques in electrolytic refining of copper[J]. Electronics and Power, 1976, 22: 773-776.
  • 3Wiechmann E P, Vidal G A, Pagliero J A. Current-source connection of electrolytic cell electrodes: an improvement for electrowinning and electrorefinery[J]. IEEE Trans. on Ind. Application, 2006, 42: 851-855.
  • 4Vidal G A, Wieehmann E P, Pagliero J A. Technological improvement in copper electrometallurgy: optibar segmented inter-cell bars[J]. Canadian Metallurgical Quarterly, 2004, 44: 147-154.
  • 5Wiechmann E P, Vidal G A, Pagliero J A, et al. Copper electrowinning using segmented intereell bars for improved current distribution[J]. Canadian Metallurgical Quarterly, 2001, 41: 425-432.
  • 6郑兆平,曾汉生,丁翠娇,刘占增,蒋扬虎,朱小平.红外热成像测温技术及其应用[J].红外技术,2003,25(1):96-98. 被引量:59
  • 7蔡毅,汤锦亚.对红外热成像技术发展的几点看法[J].红外技术,2000,22(2):2-6. 被引量:24
  • 8蔡毅,王岭雪.红外成像技术中的9个问题[J].红外技术,2013,35(11):671-682. 被引量:56
  • 9Zhao Rentao, Lin Liming, Li Huade, et al. A new approach to establishing cathode rod temperature-current model based on nickel electrolysis cells[J]. Sensors and Transducers, 2014, 168(4): 249-259.
  • 10赵仁涛,张雨,李华德,郭彩乔,铁军.基于铜电解槽电流分布估计的烧板故障诊断[J].化工学报,2015,66(5):1806-1814. 被引量:6

二级参考文献45

共引文献153

同被引文献40

  • 1张帆,徐媛卿.奥托昆普铜电解生产全过程的控制与自动化[J].中国有色冶金,2004,33(5):47-52. 被引量:3
  • 2张文林,李坚.浅谈铜电解精炼中的极间短路[J].有色冶金节能,2006,23(4):26-29. 被引量:10
  • 3杨宝东,杨立.电气设备红外诊断相对温差判别法影响因素分析[J].激光与红外,2007,37(4):341-343. 被引量:11
  • 4Wiechmann E P, Morales A A, Aqueveque P E, et al. Measurement of cathodic currents in equi potential inter-cell bars for copper electrowinning and electrorefining plants[J]. 2007:2074-2079.
  • 5Zhang Zhengyou. Flexible camera calibration by viewing a plane from unknown orientation [C]. The Proceedings of the Seventh IEEE Internation- alConferenceon. 1999..666- 673.
  • 6Ding L, Goshtasby A. On the Canny edge detec- tof[J].Pattern Recognition, 2001,34 (3) : 721 -725.
  • 7Wang H, Li P, Zhang T. Histogram feature- based Fisher linear discriminant for face detection [J].Neural Computing& Applications, 2008,17(1):49-58.
  • 8Ren J, Jiang X, Yuan J. I.earning LBP structure by maximizing the conditional mutual information [J]. Pattern Recognition, 2015, 48(10):3180- 3190.
  • 9Sampaio W B D, Silva A C, Paiva A C D, et al. Detection of masses in mammograms with adap- tion to breast density using genetic algorithm, phylogenetic trees, LBP and SVM[J]. Expert Systems with Applications, 2015,42 (22): 8911- 8928.
  • 10Fan R E, Chen P H, Lin C J. Working set selec tion using second order information for Training SVM~J]. Journal of Machine Learning Research, 2005,6(4) :1889 -1918.

引证文献7

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部