期刊文献+

关于k-严格伪非扩展映象的不动点问题

On Fixed Point Problem of k-strictly Pseudononspreading Mapping
下载PDF
导出
摘要 介绍了一类新的k-严格伪非扩展映象,举例说明了该类映象的存在性,并在Hilbert空间中建立严格伪扩展映象的不动点与变分不等式问题解集的等价关系.利用该等价关系和求解变分不等式问题的投影技巧、预解算子技巧和松弛迭代等方法,可以研究逼近k-严格伪非扩展映象不动点的数值方法. This paper introduces a class of new κ-strictly pseudononspreading mappings with some examples in Hilbert space.Equivalence between the fixed point problem of strictly pseudononspreading mapping and variational inequality is established.This alternative equivalent formulation can be used to analyze some numerical methods for finding a fixed point of pseudononspreading mapping based on the current technique such as projection,resolvent operator and relaxed iteration.
出处 《重庆工商大学学报(自然科学版)》 2015年第11期71-73,79,共4页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 重庆市自然科学基金项目(CSTC 2012jjA00039) 重庆市教委科技研究项目(KJ130731)
关键词 非扩展映象 k-严格伪非扩展映象 不动点 变分不等式 HILBERT空间 nonspreading mapping k-strictly pseudononspreading mapping fixed point variational inequality Hilbert space
  • 相关文献

参考文献13

  • 1闻道君,万波.一类新的广义非凸变分不等式问题的近似解[J].云南大学学报(自然科学版),2014,36(1):1-5. 被引量:4
  • 2WEN D J, CHEN Y A. Strong Convergence of Modified General Iterative Method for Generalized Equilibrium Problems and Fixed Point Problems of k-strict Pseudo-contractions [ J ]. Fixed Point Theory and Appl,2012(2012) : 125.
  • 3KUROKAWA Y,TAKAHASHI W. Weak and Strong Convergence Theorems for Nonspreading Mappings in Hilbert Spaces [ J ]. Nonlinear Anal, 2010(73) : 1562-1568.
  • 4KANGTUNYAKARN A. The Methods for Variational Inequality Problems and Fixed Point of k-strictly Pseudononspreading Mapping[ J]. Fixed Point Theory and App1,2013(2013) : 171-175.
  • 5IEMOTO S,TAKAHASHI W. Approximating Commom Fixed Points of Nonexpansive Mappings and Nonspreading Mappings in a Hilbert Space[ J]. Nonlinear Anal,2009(71 ) : 2080-2089.
  • 6MARINO G, XU H K. Weak and Strong Convergence Theorems for Strict Pseudo-contractions in HilbertSpaces [ J ]. J Math Anal Appl,2007(329) : 336-346.
  • 7谷峰.有限个平衡问题与非扩张映象不动点问题的复合迭代方法[J].系统科学与数学,2011,31(7):859-871. 被引量:4
  • 8VERMA R U. General Convergence Analysis for Two-step Projection Methods and Applications to Variational Problems[ J]. Appl Math Lett,2005(18) : 1286-1292.
  • 9闻道君,龚黔芬.有限个广义渐近非扩张映射的公共不动点逼近[J].重庆工商大学学报(自然科学版),2010,27(1):11-14. 被引量:1
  • 10闻道君,陈义安.广义非凸变分不等式解的存在性与投影算法[J].数学杂志,2012,32(3):475-480. 被引量:4

二级参考文献30

  • 1SCHU J. Weak and strong convergence to fixed points of asymptotically nonexpansive mappings [ J ]. Bull Austral Math Soc, 1991, 43 : 153-159.
  • 2JEONG J U, KIM S H. Weak and strong convergence of the Ishikawa iteration process with errors for two asymptotically non-expansive mappings [ J ]. Appl Math Comput, 2006,181 : 1394-1401.
  • 3NOOR M A. New Approximation Schemes for General Variational Inequalities[ J] . J Math Anal Appl, 2000,251:217-229.
  • 4NILSRAKOO W, SAEJUNG S. A new three-step fixed point iteration schme for asymptotically nonexpansive mappings [ J ]. Appl Math Comput, 2006, 181:1026-1034.
  • 5CHANG S S, TAN K K, LEE H W J, et al. On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings [ J ]. J Math Anal Appl,2006,313:273-283.
  • 6CHIDUME C E, ALI B. Weak and strong convergence theorems for finite families of asymptotically nonexpansive mappings in Ba- nach spaces[J]. J Math Anal Appl, 2007, 330:377-387.
  • 7TAN K K, XU H K. Approximating fixed points of nonexpansive mappings by Ishikawa iteration process[ J]. J Math Anal Appl, 1993, 178:301-308.
  • 8CHIDUME C E, OFOEDU E U. Approximation of common fixed points for finite families of totoal asymptotically nonexpansive mappings[ J]. J Math Anal Appl, 2007,333:128-141.
  • 9Xu H K. Iterative algorithms for nonlinear operators. J. London Math. Soc., 2002, 66(1): 240-256.
  • 10Xu H K. An iterative approach to quadratic optimization. J. Optim. Theory Appl., 2003, 116(3): 659-678.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部